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MANNEDMARSLANDINGMISSIONBY MEANSOFHIGH-THRUSTROCKETS

by Roger W. Luidens, Richard R. Burley, Joseph D. Eisenberg, Jay M. Kappraff,

Brent A. Miller, Michael D. Shovlin, and Edward A. Willis, Jr.

Lewis Research Center

SUMMARY

An examination of a wide variety of Mars manned landing missions with 1- to 3-year

durations that use high-thrust nuclear and chemical propulsion for the 1979-80 synodic

period gave the following principal results.

The use of atmospheric braking for Earth return at velocities up to 52 000 fps is an

effective way to reduce the initial weight in Earth orbit (IWIEO). Using the Earth deceler-

ation propellant for space radiation shielding can reduce the IWIEO about 20 percent.

Propulsive braking to a high circular or an elliptic parking orbit at Mars yields signifi-

cantly lower weights than a low circular parking orbit. If the spaceship is parked in a

high circular orbit, dispatching a tanker to a low circular orbit to refuel the takeoff vehi-

cle gives lower weights than a single-stage takeoff mode of operation. Atmospheric

braking to an elliptic parking orbit at Mars yields additional weight reductions. A direct

landing of the entire spaceship on the Mars surface by means of atmospheric braking gives

very large weights unless a source of propellant is available on the Mars surface.

Propulsive deceleration of a small capsule containing the crew and data to an elliptic

orbit at Earth return can yield an IWIEO competitive with atmospheric braking from a

52 000 fps velocity. Hyperbolic rendezvous of the Earth deceleration system at Mars

departure reduces both the passenger phase and the total IWIEO.

In 1980 a Mars round trip using a Venus swingby, propulsive braking at Mars, and

atmospheric braking at Earth yields about the same weight for a 37 000 fps entry velocity

as an unperturbed profile (one not using a Venus swingby) with a 52 000 fps entry velocity.

The Venus swingby with atmospheric braking at Mars and Earth yields the lowest weight

of any system considered. Trip durations of about 950 days yield stay times of 450 days

for weights comparable with those for the 400- to 500-day trips with a 40-day stay.

The IWIEO is sensitive to the input assumptions. The accumulated effect of reducing

the propulsion system performance (i. e., specific impulse, engine weight, and tank frac-

tion) can double the IWIEO. Doubling mission payloads would also approximately double

the IWIEO. Chemical space propulsion for the Mars mission can yield an IWIEO that may

be acceptable for the mission profiles which use elliptic parking orbits or atmospheric

braking at Mars and atmospheric braking or elliptical orbit pickup at Earth return.



INTRODUCTION

After the successful exploration of the Moon, a subsequent major step in man's con-

quest of space will be the exploration of the nearby planets of Mars and Venus. The

manned Mars landing mission is perhaps a decade or two in the future. In view of the

great difficulty of this mission, it is appropriate to examine many possible approaches to

the mission with the general objective of finding those that are feasible and advantageous

and to indicate necessary and fruitful areas for research.

Some early detailed studies of fast Mars and Venus missions are reported in refer-

ences 1 and 2. One of the first studies to report the influence of solar-flare shielding and

atmospheric braking at Earth and Mars on the landing mission was reference 3. More

recently the NASA EMPI RE contracts have resulted in reports on manned flyby and stop-

over missions (refs. 4 to 6). These studies were made for the most part for the time

period of the early 1970's because this period appears to be the most favorable in terms

of energy requirements.

A second round of mission studies was made for the more difficult 1975 to 1985 time

period (refs. 7 to 13), and more detailed studies were made of some phases of the mission

(refs. 14 and 15). Although each investigator studied some variations in mission profile,

a comprehensive comparison of mission profiles was not made; also, while different

contractors considered different mission profiles, their basic inputs were not always

consistent.

This report presents an analysis of a broad range of alternative mission profiles that

use internally consistent inputs. The present study was made for 1980, one of the more

difficult years. If reasonable solutions to the mission problems existing in that year can

be found, then the mission can be accomplished in the easier years with, for example,

increased payloads.

Information in many technical areas is required to make a mission study. The avail-

able information was reviewed, and many problems were restudied or the existing analyses

extended. Some of the areas investigated were the following: corpuscular radiation

shielding, atmospheric entry, structures, solar-flare protection, chemical and nuclear

engines, trajectories, and life-support systems. In the course of this study, the inter-

actions between various subsystems were examined to assess the associated weight

penalties or gains and particularly to find those that can be made to serve multiple pur-

poses.

Mars manned landing missions of 1 to 3 years in duration that use high-thrust nuclear

and chemical propulsion are discussed. Some of the more important mission profile

elements evaluated are the following: atmospheric braking at Earth and Mars, elliptic

orbits at Mars, two-phase and direct landing missions, perihelion propulsion, and Venus

swingby trajectories. The criteria of merit used are the stay time at Mars, the initial
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Figure I. - Typical mission profile for Mars mannedlanding.
is to examine and compare a number of

mission profiles for landing men on Mars and returning them safely to Earth. The term

mission profile here refers to trajectories and techniques employed to deliver the mission

payloads to the required places in the mission. A manned Mars landing can be accom-

plished by any of several mission profiles. A typical profile is shown in figure i. The

mission begins with the vehicle system in a low orbit about Earth (point i). On an appro-

priate launch date, the vehicle and crew are accelerated by high-thrust propulsion onto an

Earth-Mars transfer trajectory. At Mars (point 2) the vehicle is decelerated into a park-

ing orbit. The vehicle stays at Mars 40 days, during which time part of the crew descends

to the Martian surface. Upon their return to the mother vehicle, it is accelerated

(point 3) onto a Mars-Earth transfer trajectory. The vehicle is finally decelerated at

Earth (point 4).

One of the criteria used to evaluate the various mission profiles is the initial weight

in Earth orbit (IWIEO). This weight depends, in addition to the general mission profile,

primarily on three inputs to the weight estimation:

(I) Mission payloads, fixed weights delivered to various points in the mission profiles

(2) Mission propulsion systems, that is, the engine and propellant systems

(3) Mission trajectories, which determine the required propulsive velocity increments

and may affect some of the mission payloads

In the following sections the concepts and numerical values used for each of the three

inputs are described. The values presented are based on detailed studies which for the

sake of brevity are not presented here. As a test of the reasonableness of the numbers,

the reader may compare the present values with those of other investigators (refs. 7

to 15) as presented in table I. The lack of a consistent and precise definition of terms

by the various authors precludes accurate comparisons. In general, the present analysis

values appear to be within the range of values estimated by others. Also, the effect of
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TABLE I. - COMPARISON OF INPUTS FOR PRESENT ANALYSIS WITH THOSE OF OTHER ANALYSES

Input Present Contractor

analysis

Douglas General General General Lockheed Philco

Dynamics Dynamics Electric (Ford)

Astronautics Fort Worth

Reference source

7 8 9 II 12,14 15

Crew size 7 6 8 6 4 3 ......

Mission

duration,days 500 460 500 500 450 600 ......

Command module

(storm shelter)

weight, lb:

Structure 4 500 ................... 1 000 ............

Astrionics 3 500 ............. al 000 2 650 ............

External 1 000 .....................................

equipment

Shielding 15 000 (typical ...... 11 800 17 550 ..................
Total 24 000 ................... I0 500 13 300 ......

Living module

(service module)

weight, ib:

Structure 5 700 ................... 4 400 ............

Centrifuge 700 760 ...............................

Internal 2 600 ................... 800 ............
equipment

Radiation 7 900 .....................................
shielding

Total 16 900 ................... 6 000 6 460 ......

Combined command

and livingmodule

(excludeslife-support

consumables)

weight, ib:

Without 18 000 20 900 b26 200 18 950 ..................

radiationshield

With radiationshield 40 900 ...... 38 000 ...... 18 500 19 760 ......

Life-support system 26 000 15 000 41 500 22 800 11 500 15 200 ......

(food,water, air)

weight, Ib

Earth entry

vehicle weight, Ib:

37 000 to 40 000 fps 11 000 13 030 9 400 ........................

52 000 fps or greater 13 850 b28 230 ....... 12 800 ...... 13 800 ........

(6 men;

65 000

fps)

acommunications.

bMaximum value.
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TABLE I. - Concluded. COMPARISON OF INPUTS FOR PRESENT ANALYSIS WITH THOSE OF OTHER ANALYSES

Input Present Contractor

analysis

Douglas General General General Lockheed Philco

Dynamics Dynamics Electric (Ford)

Astonautics Fort Worth

Reference source

7 8 9 11 12, 14 15

Power supply 3 000 b24 000 5 000 5 400 6 000 1 490 .......

Mars excursion module:

Landed crew 4 ............ 3 2 ..... 3

Crew capsule .........................................

Landed equipment .........................................

Initial weight in 76 000 55 000 ...... 70 000 36 250 ..... 58 070

Mars orbit, lb

Mars orbital weight, 6 500 ...................................

lb

Tank fraction 0. 125 ............ 0. 075 0. 18 ...........

Nuclear engine:

Specific impulse, sec 850 850 .............................

Engine thrust to engine

weight ratio:

Uushielded 10 15 .............................

With thermal shield 8 ...................................

With biological and 3 ...................................

thermal shield

Assumed minimum 16 000; 8 000 14 300 .............................

weights, ib:

Chemical engine:

Specific impulse, sec 430 480 .............................

(BeH2/_I20 2)

Engine thrust to 67 75 .............................

engine weight ratio

Specific impulse, sec 460 ...................................

(H2/F 2)

acommunications.

bMaximum value.

changing the present input values is shown in the Sensitivity of Initial Weight in Earth

Orbit to Inputs section (p. 80).

Mission Payloads

The mission payloads fall into two general categories:
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TABLE II. - EARTH RETURN MISSION PAYLOADS

Item Weight,
lb

Command module (exclusive of radiation shielding) 9 000

Living module and centrifuge (exclusive of 9 000

radiation and meteoroid protection

Earth deceleration system (includes 37 000 lb of 54 000

chemical propellant that serves 'also as
radiation and meteoroid shielding for the

command and living modules)

Life-support system (fixed part only) 3 500

Space-power-generation system 3 000

Attachments and miscellaneous 1 500

Total 80 000

,'\

// " . /rEarth decelerationsystem

1/ X\\

/i_! _ _r Meteoroidshield
iII \X

II Spacepowergeneration system

II /.r Cylindrical radiator
/

Life-support _ _ .- Solar collector

system_\ f

Commandmodule_.._i)_1_ ] _._.____ \1/i
_lr--- ::::::o -_/i(_)_-

_'\_ SUn
\x
\\

"C"

,'Centrifuge J ,
_-Antenna

80' radius

/,-Living module
//

C................)
_--2o'--_

Figure2. - Earthreturn missionpayloadsdeployedfor spaceflight.
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(1) Those carried around the entire mission and returned to the vicinity of Earth

(2) Those carried to and left at Mars

The mission payloads, in turn, depend on the real payloads.

Real payloads. - The real payload of the mission is the crew and the samples and

data acquired during the trip. The total crew consists of seven men of which either four

or all seven make the excursion to the Mars surface. These numbers were selected

based on the following general consideration. The primary purpose of the mission is the

manned exploration of the Martian surface; hence, a large fraction of the men carried

to Mars should land on the surface. The success of the mission should not depend on one

man operating alone; hence, the smallest grouping is pairs. One of the more hazardous

phases of the trip is the landing and takeoff from Mars. For the fast trips four men (in

pairs) make the excursion to the surface in two vehicles, each of which is capable of

returning the four explorers to the spaceship. Three crewmen are considered the mini-

mum for emergency operation of the spaceship; this is required in the event the surface

expedition is lost.

A minimum of six men is required for a normal duty cycle based on pairs of men

operating one-third of the time on spaceship operational duty, one-third of the time

sleeping, and one-third of the time in recreation, personal chores, and scientific duties

and studies. The previous considerations lead to the selection of a seven-man crew,

which is consistent with the size used by other investigators (table I). One thousand

pounds of samples and the stored data are assumed to be acquired at Mars and during the

trip, and this weight is also part of the real payload. The total real payload weight is

about 2400 pounds. The purpose of the Mars spaceship is to carry these real payloads,

which in turn determine the mission payloads that must be known to determine the initial

weight in Earth orbit.

Earth return mission payloads - The fixed weights returned to the vicinity of Earth

consist of the items listed in table II. The weights given are for a typical 420-day

mission. The items of table II arranged for coasting interplanetary flight are shown in

figure 2 and are now described.

Command module: The command module, which is shown in more detail in figure 3

serves two purposes. First of all, it is the control center for operation of the spaceship,

and second, it is a shelter from high energy corpuscular radiation. The volume of the

module is 450 cubic feet of which 50 cubic feet are occupied by radiation sensitive oper-

ating equipment. A crew of two or three occupies the command center during normal

operation. All seven of the crew can be accommodated, with four men in the standing

position, for the short periods (e. g., 1 day) when high energy radiation is expected.

The major weight of this item is generally the radiation shielding surrounding the interior

volume.
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Living module: The living module should contain the normal living equipment for

eating, sleeping and recreation, and laboratory and medical facilities. It should be de-

signed to provide a liveable environment in terms of atmosphere, volume, gravity, tem-

perature, and safety from meteoroid and radiation hazards. One conceptual design sat-

isfying these requirements is shown in figure 4. The living module has a volume of

5500 cubic feet and an internal atmospheric pressure of 7 pounds per square inch absolute.

It is connected to the Earth entry vehicle by a boom (see fig. 2). An artificial gravity of

0.3 g is provided by the rotation of the living module Earth entry vehicle system, with

the Earth entry vehicle plus some retrorocket propellant serving as a counterweight.

The angular momentum is balanced by a counter rotating centrifuge, which provides up

to I0 g's to exercise the crew's G tolerance. The centrifuge mass may consist of men,

retrorocket propellant, or life-support items. The combined systems are accelerated

angularly by electric power or manpower and decelerated by a friction brake.

Protection from daily and weekly solar flares and meteoroids is provided by 6 pounds

per square foot of mass in the outer shell. During the higher energy radiation of the

monthly solar flares and class 3+ flares, the crew occupies the command module.

The Sun heats only one side of the outer shell of the living module. A uniform tem-

perature is maintained by rotating the meteoroid shield around the vehicle or by circulat-

ing fluid in the outer shell. The circulating fluid functions as a radiation and meteoroid

protection and is contained in multiple independent loops. A meteoroid puncture would

require the patching and refilling of the damaged tubes. The desired level of temperature

is maintained by adjusting the aspect of the module with respect to the Sun and by surface

coatings. To improve reliability, the living module is divided into two pressure inde-

pendent units. The full-duty cycle of the scientific crew members may be in this module.

Earth deceleration system: The Earth deceleration system (fig. 5) is also part of the

weight that arrives in the vicinity of Earth. It consists, in general, of the Earth atmos-

pheric entry vehicle and a retrorocket. The payload for the entry vehicle is the real

mission payload (i. e., the crew, data, and samples) of 2400 pounds.

The Earth atmosphere entry vehicle weight varies from ii 000 to 16 500 pounds for

atmospheric entry from 26 000 and 65 000 feet per second, respectively (refs. 16 and 17).

As a matter of judgement, 52 000 fps was taken as the maximum atmospheric entry

velocity, although higher entry speeds may be thermodynamically feasible (ref. 16).

The vehicle has a lift-drag ratio of 1. It is sized to give 5.5 feet of unobstructed interior

depth to accommodate the seated crewmen. The corresponding volume is 1400 cubic feet.

The vehicle is shaped to minimize hot gas radiation. It has leading edges swept 60 °, a

small radius nose, and a maximum attack angle of 23 ° (refs. 16 and 18). The high con-

vective heating rates at the nose might be accommodated by extruding ablation material

or transpiration cooling. For a maximum G load of i0 g's the entry corridor depth is

about 30 miles (ref. 18), which is adequate for the anticipated guidance capabilities

9
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Figure 5. - Vehicle for Earth atmospheric entry from 52 000 fps.

(refs. 19 and 20).

The atmospheric flight path during the deceleration subsequent to the entry maneuver

is characterized by a constant 8 G deceleration at supercircular speeds and 4 G at sub-

circular speeds. Downrange control is obtained by gliding up out of the atmosphere at

circular velocity when increased range is required (ref. 21).

The Earth return retrorocket may vary from a substantial nuclear propulsion stage

to a chemical stage to no stage at all, depending on the allowable atmospheric entry

velocity and Earth approach velocity associated with each mission profile.

Life-support system: The life-support system selected for the interplanetary vehicle

uses an open food and oxygen cycle but a closed water cycle (fig. 6). Food, water, and

oxygen are consumed by crewmen at the rate of 2.3, 4.0, and 2. 1 pounds per man-day,

respectively (ref. 22). In addition, 20 pounds per man-day of recycled water is allowed

for utility purposes. Cabin air leakage is assumed to be I. 5 pounds per day, and com-

plete air changes are made at 3-month intervals. Potable water is recovered from the

perspired and respired moisture in the atmosphere and by the vapor compression distil-

lation of urine. The total life-support system requirements for seven men are 3500 pounds

plus 45 pounds per day, plus 260 watts of power.
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Figure 5. - Schematicof life-support system. (All weights in pounds per manper day.)

Space-power system: An estimated 7.5 kilowatts of power were required for the

interplanetary vehicle. A solar Rankine system was selected to generate the power.

This system was selected over a nuclear dynamic system to eliminate the radiation shield

weight and dose associated with a nuclear system, and because the solar system offers a

greater repair opportunity since its components are not radioactive. This system was

estimated to weigh 200 pounds per kilowatt (ref. 23), and a spare unit was carried giving

a total weight of 3000 pounds for the 7.5-kilowatt requirements. Solar cells are also a

potentially lightweight and reliable power source.

Mars exploration weights. - In addition to the mission payload carried back to Earth

(80 000 lb), there is a nearly equal weight carried to but left at Mars. This weight may

be divided into the categories shown in table HI. The typical lander weights shown are

for a low circular parking orbit and a 40-day stay.

Orbital payloads: The total orbital payload weight is 6500 pounds for all mission pro-

files and provides for several functions:

(1) Landing probe to survey possible landing sites and to study sites not of sufficient

11



TABLE III. - MARS EXPLORATION WEIGHTS

Item Weight,

lb

Orbital payload 6 500

Manned landers (two-man landers) 60 000

Equipment landers with equipment (2) 14 000

Meteoroid protection, attachments, and 1 500

misc ellaneous

Total 82 000

interest to warrant manned landings

(2) Atmospheric static probes to check atmospheric composition, winds, and tem-

peratures; dynamic probes to check heat protection performance and the char-

acteristics of entry trajectories

(3) Space probes to monitor the magnetic and particulate radiation and the meteoroid

fluxes in the vicinity of Mars and to serve as communication relays

(4) Probes to the moons of Mars

(5) Telescopic, infrared, ultraviolet, and radar systems for the study of the Mars

surface and atmosphere from orbit

Manned landers: The weight required to land the men on the Mars surface and return

them to the orbiting spaceship is the largest of the weights carried to and left at Mars.

A major fraction of this weight is the propellant to boost the crew vehicle from the Mars

surface to orbit. The weight of this system is hence sensitive to the propulsion system

performance and to the mother ship parking orbit and takeoff trajectory profile, which

are discussed in the Orbital Operations at Mars section. The landing from and takeoff to

a low circular orbit to be described is typical of the landing operation (fig. 7).

The lander shown on the spaceship surrounded by meteoroid and space thermal pro-

tection in figure 7(a) corresponds to point A of the trajectory profile shown in figure 7(b).

The lander is separated from the spaceship and the retrorocket is fired at point B to

establish the atmospheric entry trajectory, which gives a 10° path angle at maximum G

load (point D). Most of the landing vehicle velocity is absorbed by atmospheric braking

(points C to F). This is possible even for Mars surface densities of one one-hundredth

of the Earth's surface density. Heat protection during the atmospheric entry is provided

by an ablation material (although radiation cooling is also possible). At point F the

vehicle is at such a velocity and altitude that a 2 G deceleration by the retrorocket will

bring it to rest just above the Mars surface. Two minutes of fuel is allowed for hover and

translation to the planned landing site. The small landing impact is absorbed by shock

absorbers (fig. 7(c)).
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During the stay on the surface the takeoff propellant is protected thermally by foils

in a vacuum jacket around the tanks. Vacuum jacketing is feasible because of the low

Mars atmospheric pressure. The crew life support and electrical power are provided by

a completely open system for missions with a 40-day stay. For missions with a longer

stay time, the life-support system is the same kind as that used for the spaceship.

Prior to takeoff, the lander is stripped or detached from all unnecessary weights,

that is, tank insulation, landing and hover rocket systems, and heat shield and landing

system. The boost to orbit is accomplished by a single-stage rocket operating along a

minimum AV trajectory. After reaching orbit, two more brief propulsion periods re-

suit in a rendezvous with the spaceship.

The payload for the takeoff vehicle is the crew capsule, which weighs 3400 pounds

and includes a crew of two and 500 pounds of samples and data. In the missions studied

there are two two-man landers. In the event of a failure in one of the landers, the fault-

less vehicle can be arranged to accommodate four crewmen at the expense of the Mars

samples.

For both nuclear and chemical space propulsion, a specific impulse of 430 seconds

was assumed for the Mars takeoff propulsion system, which corresponds to a chemical

combination such as B2H 6 + OF 2.
Equipment lander: Most of the equipment is landed on separate vehicles. In the

present analysis two equipment landers are used. The total landed equipment weight is

8000 pounds and may consist of a land roving vehicle and its propellant and scientific
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equipment. The weight in orbit of the two landers is about 14 000 pounds. Because these

vehicles do not return to orbit and only a small retrorocket is required for deorbit and

landing, their weight is not very sensitive to the spaceship parking orbit or to the retro-

rocket propulsion system performance.

In some mission profiles it may be more convenient to combine the manned and

equipment landers into a single vehicle. To a first approximation this will result in no

change in the system weights.

Mission Propulsion Systems

In addition to the mission payloads, the initial weight in Earth orbit depends also on

the mission propulsion system. The propulsion system in the broadest sense consists of

the propellant and related tankage and structure and the thrustors and their associated

weights. Both high-thrust nuclear and chemical propulsion systems are considered.

Propellant and tankage. - For the nuclear propulsion system hydrogen is the logical

propellant choice. The quantity of hydrogen required is determined during the course of

the calculation of the IWIEO. The weight of a number of propulsion system items is re-

lated to the propellant consumed by the engine. These items are the propellant tank shell

which contains the internal pressure and transmits loads, the meteoroid and thermal

protection, the boiloff, the tank pressurization system, and the outage. The weight of

the tank and structure required to contain the propellant was estimated by considering a

number of factors. The tankage was designed strong enough to contain an internal pres-

sure of I0 psi and to allow boost from the Earth surface to Earth orbit with fully loaded

tanks for a booster peak acceleration of 6.0 g's. The mission payloads are not supported

by the spaceship tanks during boost. The tankage is also designed to sustain a space

flight acceleration of i. 0 g with the mission payloads in place.

Meteoroid protection of the bumper type was designed to give a probability of no

puncture of 0.999 based on 1964 flux and penetration data (refs. 24 and 25). Weight allow-

ances have been made for leak detection and patching. With the patching of one leak, the

probability of mission success is still 0. 999 for a flux I00 times as severe as that when

no patching is assumed.

Because of its low liquid temperature the thermal protection of the hydrogen is an

important consideration (ref. 26). During space flight and in the Mars parking orbit the

interplanetary vehicle is assumed oriented to minimize the area exposed to the Sun and so

that the solar collector shades the tanks. In the planetary parking orbit the vehicle is

assumed randomly oriented with respect to Mars about the spaceship axis through the

Sun. Thermal protection from the solar and planetary fluxes is provided by multiple

foils. The heat that does penetrate to the propellant is absorbed by boiloff, which is
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vented to maintain a constant tank pressure of IO psi. A hot gas bleed system has been

assumed for tank pressurization during propulsion.

An allowance has also been made for both ullage and liquid outage. In the aggregate,

the previous propellant-related weight items yield the same IWIEO as some equivalent

value of the ratio of propellant tank to useful propellant, which is called the effective

tank weight fraction (defined as the deadweight divided by the propellant weight). Based

on the previously mentioned studies, an effective tank weight fraction of 0. 125 was used

in the present analysis for nuclear stages. This fraction in reality varies somewhat with

mission profile, stage size, and mission maneuver, and it also depends on such factors

as whether the meteoroid and thermal protection weights are shed prior to firing of the

stage and whether tanks are staged during firing.

For chemical space propulsion a hydrogen-fluorine system was assumed with an ef-

fective tank weight fraction of 0. 05. A separate allowance was made for the weight of

thrust structure, 0.01 of the thrust, and for the weight of interstage structure, 0.01 of the

force trans mitred.

Thrustor performance. - Nuclear engines without shielding were assumed to have a

thrust-to-weight ratio of 10 and a specific impulse of 850 seconds (ref. 27). All engines

are required to have thermal shielding to reduce propellant boiloff during firing. This

reduces the thrust-to-weight ratio to 8.0. In the present study when a nuclear stage is

used for decelerating the Earth entry vehicle at Earth return, it must have biological as

well as thermal shielding to reduce the radiation dose to the crew. The overall thrust-to-

weight ratio in this case is 3. For nuclear engine firings other than at Earth return,

crew protection from nuclear reactor radiation is provided by the tanks of liquid hydrogen

and the separation distance, in addition to protection afforded by the command module

solar radiation shielding.

Minimum sizes and weights for available nuclear engine systems were also assumed

for the Earth deceleration stage. Arbitrary values of 8 000 and 16 000 pounds were as-

sumed for the minimum weight of a nuclear engine plus biological and thermal shielding.

An engine thrust-to-weight ratio of 67 and a specific impulse at 460 seconds were

used for the hydrogen-fluorine chemical system (ref. 28).

Space vehicle staging. - For the present study separate engine and tank systems were

used for each major propulsive maneuver. This is sometimes referred to as tandem

staging. A possible space vehicle configuration consistent with this assumption is shown

in figure 8. Analyses, not presented here, show that other spaceship arrangements,

such as a single engine with only tank staging or a system of parallel staging of tanks and

engines, can give approximately the same mission weights as the system selected. The

results of the mission profile analyses are thus only slightly dependent on the assumption

of the type of staging for the space vehicle.

For stages other than the Earth deceleration stage, the initial accelerations for each

major maneuver is 0. 2 g's for nuclear stages and 0. 4 for chemical stages. This presumes
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that engines of the required thrust level

are available, or that the desired thrust level
can be achieved by clustering smaller engines.

Guidance and control. - Interplanetary
"\\_ Commandmodule

LeaveMars trajectory guidance corrections were provided

FMars landing by separate chemical stages for all cases.

vehicle (2) The specific impulse was 430 seconds, the

engine thrust-to-weight ratio 67, and the ac-

Arrive Mars celeration 0.01 g. The midcourse correction

AV's were estimated from references 4 and 5300' and are shown in tables IV and V.

I

LeaveEarth _--50'--_ Mission Trajectories

Figure8. - AssembledMarsspacevehiclein Earthorbit. Earth In addition to the mission payloads and

returnmissionpayloadsshowndeployedforspaceflight, propulsion system, the third major factor

determining mission weights is the trajectory.

The trajectory is characterized by its launch date, leg and stay times, mission peri-

helions, maximum communication distance, propulsive AV's, and atmospheric entry

velocities. These characteristics are given for a spectrum of trips in tables IV to XI.

The following discussion classifies the types of trajectories considered.

The trajectories used in the present study are referred to as medium thrust trajec-

tories. The propulsive AVTs are determined by assuming impulsive thrust maneuvers

(ref. 29). These AVis are then appropriately increased to account for the propulsive

efficiency (frequently referred to as "gravity losses") associated with operation in

planetary gravitational fields at practical thrust levels (refs. 30 and 31).

Fast mission profiles are characterized by trip times of less than 600 days (figs. 9

and 10(a) and table IV) and short stay times, for example, 40 days. (The data of fig. 9

assume low circular parking orbits at Earth and Mars. ) The mission _ AV increases

with increasing stay time (fig. 9), the mission perihelions are inside the Earth orbit

(fig. 10(a)), and the mission aphelions are at Mars. The fast trips show a local minimum

in the AV sum for trips times of about 500 days.

The intermediate mission profiles occur for mission durations between about 640 and

850 days (fig. 9). The stay time for minimum propulsive AV is zero, and the propulsive

AV increases with increasing stay time. However, at 800 days the change in propulsive

AV is slight for increases in stay time up to about 150 days. For the intermediate trips,

the mission aphelions are outside the Mars orbit, the mission perihelions are at Earth

(fig. 10(b)), and the Mars approach velocities are higher than for the slow trips (table IV).
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Figure 9. - Minimum total velocity increments re-
quired for stopoverround trips to Mars. De-
parture date, 1979-80.

(a) Mission duration, 420days; (c) Mission duration, 1000days;
stay time, 40days; launch (b) Mission duration, 800days; staytime, 450days; launch
year, 1979-80;profile, short- staytime, 100days; launch year, 1979-80;profile,
long. year, 1979-80. "double Hohmann".

/ / X P Mission perihelion

( 4/f(9--? 1 / Id_ 1 ¢A Mission aphelionEarth

k "_.. _____ / _ (3 Sun

(d) Mission duration, 420days; (e) Mission duration, 420days;
stay time, 40days; launch stay time, 40 days; launch
year, 1979-80;, profile, long- year, 1970-71; profile, short-
short, long.

Hgure 10. - Types of unperturbed Mars stopover round-trip trajectories.
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TABLE IV. - TRAJECTORY PARAMETERS FOR ALL-PROPULSIVE

MARS STOPOVER ROUND TRIPS IN 1979-80

[Circular Mars parking orbit, i. 1 radii. ]

(a) Fast, short-long trajectory profile (see fig. i0)

Mission duration, days 300 360 420 500 600

Departure date, Julian day, 2444 - 250 240 220 190 100

Perihelion radius (min), 0. 658 0. 581 0. 501 0. 401 0. 382

astromonical unit

Maximum transmission distance, 0. 265 1. 341 1.635 1. 920 1. 996
astronomical unit

Minimum _-_AV, miles/sec 25.7 19.6 16.8 16.2 17.6

Earth departure:

VH1 , miles/sec 22. 10 21.73 20.91 20.56 19.95

_1' deg 14.90 10.76 5.81 .50 -13.73

AV1, miles/sec 4.38 3.49 2. 56 2. 21 3.41

Earth-Mars transit:

1, 2' deg 64.0 84.3 122. 9 i 177.0 270. 0

AT1, 2' days 100 120 1801 260 360

AVMc , miles/sec 0.084 0. 084 0. 084 0. 084 0. 084

Mars arrival:

VH2 , miles/see 14.40 13.87 12. 90 13. 07 12.87

_2' deg 27.90 23.05 10.24 -.0017 -9.02

AV2, miles/deg 5.86 4.79 2. 58 i. 50 i. 56

Mars stay:

AT2, 3' days 40 40 40 40 40

Mars departure:

VH3 , miles/sec 15.0 ii. 88 Ii. 08 i0. 05 9.85

_3' deg -38.4 -25.02 -21.61 -14. 34 -12.44

AV3, miles/sec 7.06 3.88 3.75 4. 20 4.29

Mars-Earth transit:

_3, 4' deg 206. 0 252. 2 273.7 298.3 302. 8

AT3, 4 days 160 200 200 200 200
AVMc , miles/sec 0.095 0.095 0. 095 0. 095 0.095

Earth arrival:

VH4 , miles/sec 222. 3 20.31 19.51 18.23 17.96

_4' deg 29.8 29.63 32. 85 36. 28 36.95

AV4, miles/sec 8.46 7.42 7.82 8.30 8.38
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TABLE IV. - Concluded. TRAJECTORY PARAMETERS FOR ALL-

PROPULSIVE MARS STOPOVER ROUND TRIPS IN 1979-80

[Circular Mars parking orbit, 1. 1 radii. ]

(b) Intermediate and slow trajectory profiles (see fig. 10)

Trajectory profile

Intermediate Slow

Mission duration, days 700 800 900 1000

Departure date, Julian day, 2444 - 400 340 210 200

Perihelion radius (rain), 1. 0 1.0 1.0 1.0

astronomical unit

Maximum transmission distance, 2.0 2. 5 2. 5 2. 5
astronomical unit

Minimum _AV, miles/sec 12.87 10.71 8.62 7. 65

Earth departure :

VH1 , miles/sec 21.06 20.93 20. 59 20. 36

_1' deg 6. 17 4.55 3. 50 -5. 25

AV1, miles/sec 2.84 2. 47 2. 26 2. 17

Earth-Mars transit:

1, 2' deg 211.7 219.9 207.25 228.8

AT1, 2' days 480 440 240 260
AVMc , miles/sec 0. 084 0.084 0.084 0.084

Mars arrival:

VH2 , miles/see 13.89 14.57 14. 50 13.96

_2' deg -1.99 -1.66 -I. ii -9.14

AV2, miles/sec 4.20 4.33 i. 51 i. 44

Mars stay:

AT2, 3' days 40 I00 450 450

Mars departure:

VH3 , miles/sec ii. 85 12. 70 12. 59 13.46

_3' deg -3.30 i. 73 3.98 8. 21

AV3, miles/see i. 69 i. 29 i. 38 i. 45

Mars- Earth transit:

a3, 4' deg i00.8 157.4 142.9 215.0

AT3, 4' days 180 260 210 290

AVMc , miles/sec 0. 095 0. 095 0. 095 0. 095

Earth arrival

VH4 , miles/see 20.07 20.28 20.19 20. 32

_4' deg -15.88 -5.33 -9.52 0.80

AV4, miles/see 4. 14 2.62 3.47 2. 59
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TABLE V. - TRAJECTORY PARAMETERS FOR MARS STOPOVER

ROUND TRIPS IN 1979-80 USING ATMOSPHERIC BRAKING

AT MARS ARRIVAL AND ATMOSPHERIC BRAKING

AT EARTH RETURN FROM 52 000 fps

[Circular Mars parking orbit, i. 1 radii. ]

(a) Fast, short-long trajectory profile (see fig. i0)

Mission duration, days 300 360 420 500

Departure date, Julian day, 2444 - 260 240 200 140

Perihelion radius (min), 0. 643 0. 581 0. 548 0. 499
astronomical unit

Maximum transmission distance, I. 378 I. 341 i. 365 i. 520

astronomical unit

Minimum _AV, miles/sec 15.55 9.91 8.01 8.90

Earth departure:

VHI , miles/sec 21.39 21.73 21.69 20.60

_I' deg 19.70 10.76 -1.05 -8.50

AVa, miles/sec 5. 10 3.50 2.52 2.95

Earth-Mars transit:

1, 2' deg 64.0 84.3 125. 0 194.5

AT1, 2' days 100 120 160 240
AVMc , miles/sec 0.084 0. 084 0. 084 0.084

Mars arrival:

VH2 , miles/sec 13.35 13.87 13.92 12. 70

a2' deg 25.53 23.05! 20.68 10.8

VC_, miles/sec 7.36 6.93 6.43 4.25

Mars stay time:

AT2, 3' days 40 40 40 40

Mars departure:

VH3 , miles/sec 14.88 11.88 10.80 10. 39

_3' deg -38. 56 -25.02 -16.28 -13. 58

AV3, miles/sec 7. 10 3.88 3.09 3. 20

Mars-Earth transit:

83, 4' deg 211. 6 252. 2 272. 5 283.4

AT3, 4' days 160 200 220 220
AVMc , miles/sec 0. 095 0. 095 0. 095 0.095

Earth arrival:

VH4 , miles/sec 22. 12 20.31 19.70 19.29

(_4' deg 30.87 29.63 30.35 32.29

AV4, miles/sec 3.35 2. 53 2. 52 2.75
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TABLE V. - Concluded. TRAJECTORY PARAMETERS FOR MARS

STOPOVER ROUND TRIPS IN 1979-80 USING ATMOSPHERIC

BRAKING AT MARS ARRIVAL AND ATMOSPHERIC

BRAKING AT EARTH RETURN FROM 52 000 fps

[Circular Mars parking orbit, I. I radii. ]

(b) Fast, short-long, intermediate, and slow trajectory profiles (see fig. I0)

Trajectory profile

Fast, Intermediate Slow

short-

long

Mission duration, days 600 700 800 900 1000

Departure date, Julian day, 2444 - 100 400 340 210 200

Perihelion radius (min), 0. 382 1.0 1.0 1.0 1. 0

astronomical unit

Maximum transmission distance, 1° 996 2.5 2.5 2. 5 2. 5

astronomical unit

Minimum _AV, miles/sec 11. 08 4. 53 3.76 3.64 3.62

Earth departure:

VH1 , miles/sec 19.95 21..06 20. 93 20.59 20. 36

_1' deg -13.73 6.17 4.55 3.50 -5.25

AV1, miles/sec 3.41 2. 84 2. 47 2. 26 2. 17

Earth-Mars transit:

01, 2' deg 270 211.7 219.9 207.3 228.8

AT 1, 2' days 360 480 440 240 260

AVMc , miles/sec 0. 084 0. 084 0. 084 0. 084 0. 084

Mars arrival:

VH2 , miles/see 12. 87 13.89 14.57 14.50 13.96

_2' deg -9.03 -1.99 -1.66 -I. II -9.14

V(_, miles/sec 3.70 6.34 6. 47 3.93 3.48

Mars stay time:

AT2, 3' days 40 40 i00 450 450

Mars departure:

VH3 , miles/see 9.85 ii. 85 12. 70 12. 59 13.46

_3' deg -12.44 -3.30 1.73 3.98 8.21

AV3, miles/sec 4.29 I. 69 i. 29 0.38 I. 44

Mars-Earth transit:

83, 4' deg 302. 8 I00.8 157.4 142. 9 215. 0

AT3, 4' days 200 180 260 210 290

AVMc , miles/sec 0. 095 0. 095 0. 095 0. 095 0. 095

Earth arrival:

VH4 , miles/sec 17.96 20.07 20.28 20. 19 20.32

_4' deg 36.95 -15.88 -5.33 -9.52 0.80

AV4, miles/see 3.38 0 0 0 0
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TABLE VI. - PROPULSIVE VELOCITY INCREMENT FROM PROPELLANT

SOURCE TO ACQUIRE TRAJECTORY TO MARS

Mission duration, Propulsive velocity increment, AV, miles/sec

T m ,
Propellant source

days

Earth surface Collected in orbit Moon surface

about Earth

300 i0.08 4.38 5.73

360 9. 19 3.49 4.46

420 8.26 2. 56 2. 84

500 7.91 2. 21 2.08

600 9. ii 3.41 4.36

700 8.54 2. 84 3.39

800 8. 17 2.47 2.66

900 7.96 2. 26 2.21

lO00 7.87 2. 17 i. 99
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TABLE VII. - PROPULSIVE VELOCITY INCREM},:NT CONSIDERATIONS FOR RENDEZVOUS AT EARTH

RETURN AND AT MARS DEPARTURE

Mission Total propulsive velocity increment to Propulsive velocity increment Propulsive velocity increment

duration approach Earth by means of Mars, for rendezvous with spaceship for rendezvous with spaceship

Tm, 3 near Earth return, at Mars departure with matched
AV, miles/sec inbound trajectories and time

days 1

miles/sec separation between phases
(see fig. 30(5))

Propulsive braking Propulsive braking At _$= 1. 1 At _ = 10 Time after Propulsive velocity

into a low into an elliptic AV a = AV b _V a = AV b manned phase increment for

circular parking parking orbit (see fig. 30(a)) (see fig. 30(a)) launch, rendezvous,

orbit at Mars at Mars days miles/sec

(_c = 1.1) (_a = 27, _p = 1. 1)

300 17.30 15.67 8.46 11.48 .......

360 12. 16 10.53 7.42 10.19 -40 7. 20

420 8.89 7.26 7.82 10.74 20 5.38

500 7.91 6.28 8.30 11.29 25 5.83

600 9.26 7.63 8.38 11. 37 125 6. 19

700 8.73 7.10 4. 14 6. 12 .......

800 8.09 6.46 2. 62 3.67 0 to -60; or 2. 25

-930

900 5. 15 3.52 3.47 5. 11 0 to -60; or 2. 25

-800

1000 5.06 3.43 2. 59 3.58 0 to -60; or 2.25
-790
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TABLE VIII. - COMPARISON OF TRAJECTORY PARAMETERS FOR UNPERTURBED AND PERTURBED MARS STOPOVER ROUND TRIPS

[Atmospheric entry velocity at Earth is Ve ~4.9 + AV 4 miles/sec and at Mars is VOw~2.1 + AV 2 miles/sec. ]

Unperturbed Perihelion Propulsion Venus swihgby

short-long on outbound

trajectory Braking on Acceleration leg

inboundleg on outbound

of short-long leg

trajectory long-short

trajectory

Mission duration,days 500 556 542 550 Missionduration,days

Mission perihelion 0.40 0.375 0.33 0.33 Missionperhelion

Earth departuredate,Julianday, 2444 - 190 180 885 840 Earthdeparturedate,Julianday, 2443 -

Propulsivevelocityincrement leaving 2.21 2.35 2.42 2.37 Propulsivevelocityincrementarriving

Earth, AVI, miles/sec Earth, hV 4, miles/sec
Earth-Mars transit time, days 260 240 240 230 Mars-Earth transit time, days

Earth-Mars heliocentrictravelangle, 177 174 159 --- Mars-Earth heliocentrictravelangle,

01,2' deg 03,4' deg
Propulsivevelocityincrementarriving 1.50 1.95 1.67 1.76 Propulsivevelocityincrement leaving

Mars, AV2, miles/sec Mars, AV3, miles/sec
Mars staytime, days 40 40 40 40 Mars staytime, days

Propulsivevelocityincrementleaving 4.20 4.15 4.60 3.61 Propulsivevelocityincrement arriving

Mars, AV3, miles/sec Mars, AV2, miles/sec
Mars periheliontransittime, days .... 163 169 124 Mars perihelion(Venus)transittime,

days

Perihelionpropulsion,AVh, miles/sec .... 1.72 1.71 .... Perihelionpropulsion,AVh, miles/sec
PerihelionEarth transittime,days .... 113 93 156 Perihelion(Venus)Earth transittime,

days

Mars-Earth transittime, days 200 276 262 280 Earth-Mars transittime, days

Mars-Earth heliocentrictravelangle, 298 360 360 370 Earth-Mars heliocentrictravelangle,

63,4' deg _3,2' deg
Propulsive velocity increment arriving 8.30 3.60 3.88 2. 68 Propulsive velocity increment leaving

Earth, AV4, miles/sec Earth, AVI, miles/sec

4 4

All propulsive, y_ z_V + AV h 16.21 13.77 14. 28 10.42 All propulsive, _ AV + Z_Vh
1 1

Atmospheric braking at Earth, 7.91 i0. 17 11.86 8.05 Atmospheric braking at Earth,

3 3

Z_V+AV h _ AV+ AVh
1 1

Atmospheric braking at Earth and Mars, 6.41 8o 22 7.26 4. 44 Atmospheric braking at Earth and Mars,

AV I+AV 3+AV h AV I+AV 3+AV h



TABLE IX. - TRAJECTORY PARAMETERS FOR PERIHELION BRAKING ON INBOUND

LEG OF A SHORT-LONG MARS STOPOVER ROUND TRIP

[Atmospheric entry velocity at Earth is V_9=4.9 + AV 4 miles/sec and at Mars

is V<_=2. 1 + AV 2 miles/sec. ]

Mission duration, T m, days

476 496 556 596 656 676

Mission perihelion 0. 375 0. 375 0. 375 0. 375 0. 375 0. 375

Earth departure date, Julian day, 2444 - 260 240 180 140 080 060

Propulsive velocity increment leaving 4.4 3.25 2. 35 2. 59 3.91 4.86

Earth, AV1, miles/sec
Earth-Mars transit time, days 160 180 240 280 340 360

Earth-Mars heliocentric travel 91. 5 112 174 212 270 289

angle, a l, 2' deg
Propulsive velocity increment arriving 2. 2 2.05 1.95 1.67 1. 57 2.01

Mars, AV2, miles/sec
Mars stay time, days 40 40 40 40 40 40

Propulsive velocity increment leaving 4. 15 4.15 4. 15 4.15 4.15 4. 15

Mars, AV 3, miles/sec
Mars perihelion transit time, days 163 163 163 163 163 163

Perihelion velocity, AV h, miles/sec 1. 72 1.72 1. 72 1.72 1. 72 1.72
Perihelion Earth transit time, days 113 113 113 113 113 113

Mars-Earth transit time, days 276 276 276 276 276 276

Mars-Earth heliocentric travel angle, 36( 360 360 360 360 360

03, 4' deg
Propulsive velocity increment arriving 3.60 3.60 3.60 3.60 3.60 3.60

Earth, AV 4, miles/sec

4

All propulsive, _ AV + AV h 16. 07 14.77 13.77 13.73 14.97 16.34
1

Atmospheric braking at Earth, 12. 47 11. 17 10. 17 10. 13 11.37 12.74

3

+ h
1

Atmospheric braking at Earth and 10. 27 9. 12 8. 22 8.46 9.80 10.73

Mars, AV I+AV 3 +AV h
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TABLE X. - TRAJECTORY PARAMETERS FOR PERIHELION THRUSTING ON

OUTBOUND LEG OF A LONG-SHORT MARS STOPOVER ROUND TRIP

[Atmospheric entry velocity at Earth is V$~4.9 + AV 4 miles/sec and at Mars

is VOd~2. 1 + AV 2 miles/sec. ]

Mission duration, Tm, days

502 542 602 642

Mission perihelion 0.33 0.33 0.33 0. 33

Earth departure date, Julian day, 2443 -_ 885 885 885 885

Propulsive velocity increment leaving 3.88 3.88 3.88 3. 88

Earth, AV 1, miles/sec
Earth perihelion transit time, days 93 93 93 93

Perihelion velocity, AVh, miles/sec 1.71 1. 71 1.71 1. 71
Perihelion Mars transit time, days 169 169 169 169

Earth-Mars transit time, days 262 262 262 262

Earth-Mars heliocentric travel 360 360 360 360

angle, 01, 2' deg
Propulsive velocity increment arriving 4.60 4. 60 4.60 4. 60

Mars, AV2, miles/sec
Mars stay time, days 40 40 40 40

Propulsive velocity increment leaving 1. 70 1.67 1.55 1. 47

Mars, AV3, miles/sec
Mars-Earth transit time, days 200 240 300 340

Mars-Earth heliocentric travel angle, 121 159 216 255

03, 4' deg
Propulsive velocity increment arriving 3.27 2. 42 2.60 3.38

Earth, AV4, miles/sec
4

All propulsive, _ AV + AV h 15. 18 14. 28 14.34 15.04
1

Atmospheric braking at Earth, 11.89 11.86 11.74 11. 66

3

+ Avh
1

Atmospheric braking at Earth and 7.29 7. 26 7.14 7.06

Mars, AV 1 +AV 3 +AV h

26



TABLE XI. - TRAJECTORY PARAMETERS FOR A VENUS SWINGBY ON

OUTBOUND LEG OF A LONG-SHORT MARS STOPOVER ROUND TRIP

[Atmospheric entry velocity at Earth is V_ = 4.9 + AV 4 miles/sec

and at Mars is V(f= 2. 1 + AV 2 miles/sec. ]

Mission duration, Tm, days

480 500 550 600 650

Earth departure date, Julian day, 2443 - 840 840 840 840 840

Propulsive velocity increment leaving 2.66 2. 66 2.66 2. 66 2.66

Earth, AV1, miles/sec
Earth-Venus transit time, days 156 156 156 156 156

Venus-Mars transit time, days 124 124 124 124 124

Earth-Mars transit time, days 280 280 280 280 280

Earth-Mars heliocentric travel angle, 370 370 370 370 370

01, 2' deg
Propulsive velocity increment arriving 3.61 3.61 3.61 3.61 3.61

Mars, AV2, miles/sec
Mars stay time, days 40 40 40 40 40

Propulsive velocity increment leaving 2.20 i. 87 i. 76 I. 72 i. 42

Mars, AV3, miles/sec
Mars-Earth transit time, days 160 180 230 280 330

Mars-Earth heliocentric travel angle, 86.45 106. 18 154. 61 202.34 250.41

03, 4' deg
Propulsive velocity increment arriving 5.22 3.82 2. 37 2.53 3.36

Earth, AV 4, miles/sec
4

All propulsive _ AV 13.76 11.96 10.50 10.52 11.05
1

Atmospheric braking at Earth, 8.47 8. 14 8. 13 7.99 7.69

3

1

Atmospheric braking at Earth and Mars, 4.86 4.53 4.54 4. 38 4.08

AV 1 + AV 3
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Slow mission profiles (fig. 10(c)) have trip times greater than about 850 days, stay times

for minimum AV at about 310 days, mission perihelions at 1 astronomical unit, and

apheiions at Mars (fig. 10(c) and table IV). A 450-day stay time was chosen for the 900-

and 1000-day trips because it offers a longer stay time while retaining near-minimum AV

when atmospheric braking is used at Earth. It is interesting to note that the actual travel

time can be comparable for the fast and slow trips; for example, for a 500-day trip with

a 40-day stay the travel time is 460 days while for a 900-day trip with a 450-day stay it

is 450 days. The intermediate and slow trips show a general decrease in AV with in-

creasing trip time up to about 1000 days, which is a global minimum (approximately the

so-called double Hohmann trip).

Short-long profiles for the fast trips are characterized by outbound legs that are

direct trajectories (i. e., pass through neither an aphelion or perihelion), shorter in

terms of the travel angle 0 measured at the Sun, and generally shorter in terms of

travel time AT than the return leg (fig. 10(a) and tables IV and V). The return leg is a

perihelion trajectory and the mission perihelion occurs on the return leg. The short-long

profiles give a low AV to leave Earth and a high approach velocity at Earth return. The

long-short mission profiles (fig. 10(d)) have the converse characteristics. Because the

short-long profiles have high Earth return velocities, the initial gross weight s for this

profile are especially responsive to the use of atmospheric braking at Earth. Thus short-

long profiles are of particular interest.

The previous trajectories all use single conic sections for their heliocentric segments.

Perihelion propulsion or a Venus swingby can be used to produce new classes of trajec-

tories called perturbed trajectories, which are generally of the fast type. As can be seen

from figure 9 they yield attractive AV's and trip times. These trajectories are described

more fully in the section Perturbed Trajectories (p. 64).

Because of the eccentricityof the Mars orbit, the propulsive AV for fast trips can

vary considerably with the synodic period in which the trip is made. A trip in 1979-80

arrives at Mars when Mars is near its aphelion (fig.10(a)). A trip in 1970-71 or 1986

arrives at Mars when itis near itsperihelion (fig.10(e)). At intermediate launch dates

Mars is at intermediate positions. The effect of this on the propulsion requirements is

illustrated in figure 11 (for low circular parking orbits at Earth and Mars) for a 420-day

trip with a 40-day stay time. These curves are not continuous, and each symbol repre-

sents a discrete local minimum as illustrated by the _'typical data. " For the all propul-

sive case there is a marked change in _ AV with launch year. The low _ &V's

occur in 1971 and again in 1986. The highest _ AV occurs in 1977 and 1979. The

present mission analysis was done for 1979-80 because it is one of the more difficult

years. Missions with lower _ AV requirements can usually be made for lower weights.

When atmospheric braking is used at Earth (middle curve) there is less variation of

_-_ AV with launch year and the level of the _ AV is much reduced. The difference
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Figure ii. - Launchyear effecton propulsive velocity increment.
Mission duration, 420days; staytime, 40days.

between the upper and middle curves is an indication of the atmospheric entry velocity at

Earth. The year 1979 is now characterized as a difficult year primarily in terms of at-

mospheric entry velocity. When atmospheric braking at both Earth and Mars is used,
4

the _ AV is even lower and varies even less with launch year. The variation in _ AV
1

is now almost completely absorbed in the atmospheric entry velocities. The variation in

the _ AV with launch year for the slow trips is small.

Mission trajectories may be selected to minimize any one of a number of criteria

such as the mission cost, weight, or _ AV. The present trajectories yield minimum

AV. Trajectories selected to give a minimum weight generally give only a slightly

lower weight than do minimum _ AV trajectories.

With the mission payloads, the propulsive velocity increments, and the propulsion

system characteristics described, the initial weight in Earth orbit may be calculated by

successive use of the rocket equation to account for jettisoned weights and staging:

I -1.03 AV 1
W G = W E - e Ig

where W G and W E are the stage initial and empty weights, respectively, AV is the

characteristic velocity increment required from the stage, and Ig is the rocket exhaust

velocity. (All symbols are defined in appendix A. ) Each stage is designed with a

3-percent AV reserve.
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Figure 12. - Mission profile variations.

INITIALWEIGHTIN EARTHORBIT

The previously described inputs are used to study the mission profile variations de-

picted in figure 12 and as outlined in the table of contents. The mission profiles are di-

vided into two broad categories, single- and multiphase profiles. For the single-phase

profiles (e. g., fig. I, p. 3), all the mission components depart from Earth on the same

date and traverse the same trajectory. For the multiphase missions there may be more

than one launch date and the several mission components each travel a different trajectory.

The elements of a mission profile are given on the left and the options available for

each element are given to the right. As in the procedure for calculating the vehicle

weight, it is convenient to discuss the mission profile elements in the reverse of their

temporal order. For the maneuver at Earth return, there is the choice of atmospheric

braking, propulsive deceleration by chemical or nuclear systems, or combinations of
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these. Next, the required space radiation shielding can be provided either by a solid

inert material or by the propellants on board the spaceship. At Mars, the spaceship can

be decelerated by either propulsion or atmospheric braking and can be either landed

directly on the surface of Mars or parked in an orbit about Mars. In the latter case, a

low or high circular orbit may be entered directly, the high circular orbits may be

achieved by means of a semiellipse, or a parallel elliptic parking orbit may be used.

When a parking orbit is used, the landing is conducted from the parking orbit. The take-

off from the Mars surface to rendezvous with the spaceship in orbit may be accomplished

by one- or two-stage vehicle or a system using an intermediate rendezvous with a tanker

vehicle.

In the category of two-phase mission profiles, the mission payloads can be retrieved

from an elliptic orbit about Earth at Earth return, or a separate Earth deceleration system

can be accelerated to rendezvous with the spaceship as it approaches Earth at hyperbolic

velocities. Alternatively the Earth deceleration system can rendezvous with the space-

ship immediately after Mars departure. Rendezvous of separate freight and passenger

ships at Mars is also possible. The previous profile variations use single conic tra-

jectories with nuclear space propulsion and assume that the propellant source is located

on the Earth' s surface. Attention is next given to other sources of propellant, perturbed

trajectories, chemical space propulsion, and aborts.

The discussion of the many mission profiles is begun by assuming nuclear space pro-

pulsion and a single-phase mission profile defined by the crosshatched blocks (fig. 12),

and it then proceeds in the order of the previous discussion. Finally, the sensitivity of

the IWIEO to the inputs to the analysis is shown and the results evaluated.

As was mentioned earlier, an important criterion for comparing the various profiles

is the initial weight in Earth orbit. This parameter is presented as a function of mission

duration for the various mission profiles.

Operationsat Earth Return

Discussed herein are the effects of using atmospheric braking at Earth for a range

of entry velocities and the effect of propulsion system choice, chemical or nuclear, to

supplement the atmospheric braking. The Earth deceleration stage weight for a 420-day

mission is considered first. This weight is then integrated into the mission to yield the

IWIEO, and then the effect of the operations at Earth return is shown as a function of

mission duration.

Atmospheric braking. - The incentive for atmospheric entry from high velocities is

illustrated in figure 13. The calculations were made for the 420-day trip, which has a

velocity approaching the Earth's atmosphere of 67 200 fps. The ordinate gives the total
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Figure 13. - Effectof Earth atmospheric entry velocity on Earth

decelerationstageweights. Mission duration, 420days; The lower curve gives the increase
staytime, 40days; Earth approachvelocity, 67000fps.

in atmospheric entry vehicle weight

with increasing entry velocity. The

basic atmospheric entry vehicle with heat protection sufficient for deceleration from

circular velocity weighs about ii 000 pounds. The weight of the heat protection increases

with increasing entry velocity to give a total entry vehicle weight of about 16 500 pounds

at 65 000 fps. The difference between the atmospheric entry vehicle weight and the total

deceleration stage weight is the weight of the propulsion system: propellant, tank, struc-

ture, and engine weight. The weight of the propulsion system decreases much more

rapidly than the entry vehicle weight increases, which results in the marked decrease in

the overall stage weight with increasing entry velocity.

Although entry from, say, 65 000 fps appears feasible in terms of heat protection

systems (e. g., ref. 16), there are other factors, all of which argue against ultrahigh-

entry speeds, that must be considered:

(1) The entry corridor depths decrease sharply and thus burden the approach guid-

ance and control system.

(2) The required maneuver rates increase and therefore tax the pilot and control

systems.

32



300 10 Eartll deceleration Minimum engine Specific
\\ propulsion system weight, impulse,

240 Ib I,
._ sec

\ Nuclear 16 000 850
g' 180 , \\

_ _ Nuclear 8 000 850.. Chemical None 430

_, 120

0

(a) Earth deceleration stageweight.

5i106 _ ',,

4 ,

1

25 000 35 000 45 000 55 000 65 000 75 000

Atmospheric entry velocity at Earth, V_, fps

(b) Initial weight in Earth orbit; nuclear space propulsion.

Figure 14. - Effect of Earth atmospheric entry velocity and Earth deceleration propul-
sion on system weights. Mission duration, 420 days; staytime, 40 days; Earth
approach velocity, 67 000 fps.

(3) The difficulty of development increases.

(4) As discussed subsequently, whatever radiation shielding weight is required on

board the spaceship can be used also for retrorocket braking. Thus, the benefit to be

gained from high-entry velocities is reduced. When these factors were considered, an

entry velocity of 52 000 fps was chosen as a practical upper limit for this study.

Choice of deceleration propulsion system. - When the allowable atmospheric entry

velocity is high (e. g., 52 000 fps), the required retro AV is comparatively low and

chemical retropropulsion can be competitive with nuclear propulsion. A comparison of

the application of these two propulsion systems to the Earth deceleration stage is made

in figure 14(a) for the same mission as the previous figure. The solid curve is also

taken from the previous figure and applies for nuclear propulsion. When nuclear pro-

pulsion is used in the Earth deceleration stage, the engine weight has an unusually large

influence as the stage weight. Because it is the last propulsive stage, the engine weight

must include weight for shielding the crew from the engine radiation. (The command

module with its protective walls is abandoned prior to the Earth approach maneuver. )

Without shielding on the engine the radiation dose from the engine rises precipitously as
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the protective mass of the intervening propellant is consumed. Also thermal shielding of

the propellants is required for this as well as for all maneuvers. The solid curve cor-

responds to the engine plus shield weight of 16 000 pounds. This is about the weight of a

NERVA type engine without biological shielding. For comparison with this engine weight,

recall that the stage payload, which is the Earth atmospheric entry vehicle, weighs be-

tween 11 000 and 16 000 pounds.

The dashed curve of figure 14(a) is for deceleration by a chemical propellant. For

the chemical systems the engine weight is on the order of 500 pounds, more than an order

of magnitude less than the weight of the nuclear engine or the weight of the entry vehicle.

On the other hand, the specific impulse of the chemical system is 430 seconds compared

with 850 seconds for the nuclear system.

As a consequence of the previously described engine characteristics, the curves for

the stage weights of the nuclear and chemical system cross at an atmospheric entry

velocity of 46 000 fps. Chemical propulsion gives lower weights for higher atmospheric

entry velocities. Nuclear systems give lower weights for lower atmospheric entry veloc-

ities where the required propulsive AV's are correspondingly higher. With this nuclear

engine, a chemical stage gives a lower weight than a nuclear stage for the assumed

feasible atmospheric entry velocity of 52 000 fps.

The position of the nuclear system compared with the chemical system is improved

if a nuclear engine plus shield of reduced weight is hypothesized. The dash-dot curve

(fig. 14(a)) is for a nuclear engine with a minimum weight of 8000 pounds but with the

same specific impulse as the heavier nuclear engine, 850 seconds. With this engine the

stage weights are less than the chemical stages up to an entry velocity of 62 000 fps. At

an atmospheric entry velocity of 52 000 fps the chemical stage is 20-percent heavier than

the stage with the lighter nuclear engine.

If the Earth's atmospheric entry velocity were limited to 37 000 fps, then either

nuclear system would give a lighter stage weight than the chemical system. The nuclear

engine plus shield weighing 8000 pounds gives a stage weight of 105 000 pounds compared

with 162 000 pounds for the 16 000-pound nuclear engine system. This last example illus-

trates the greatest importance of nuclear engine weight when nuclear propulsion is con-

sidered for the Earth deceleration maneuver. Engine weight is important because it is

comparable in weight to the stage payload, which is the atmospheric entry vehicle.

The importance of the atmospheric entry velocity and deceleration propulsion system

is best seen by looking at their effect on the initial weight in Earth orbit. The initial

weight in Earth orbit is not directly proportional to the deceleration stage weight because

the Earth deceleration stage weight is only part of the weight delivered to the vicinity of

Earth and because a substantial weight is deposited at Mars. Figure 14(b) presents the

initial weight in Earth orbit against the atmospheric entry velocity for the three Earth-

return deceleration systems considered in figure 14(a); nuclear propulsion is assumed
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for the prior space maneuvers.

The curves have the same general shape and intersect at the same values of entry

velocity as those of figure 14(a). The use of atmospheric braking is seen to be a very

powerful technique for reducing the IWIEO. For example, propulsive deceleration to cir-

cular velocity at Earth (26 000 fps) by using the heavier nuclear engine yields an IWIEO

of 5.3 million pounds. If full-atmospheric braking (from 67 200 fps) is used, the weight

is 1. 75 million pounds, which is a weight reduction of 70 percent. A 60-percent weight

reduction exists for chemical deceleration to 52 000 fps entry velocity, which is the

assumed feasible value. The weight reduction for full-atmospheric braking compared

with full propulsive deceleration is 60 percent if the lighter nuclear engine is available.

At a 52 000 fps entry velocity, the use of the lighter nuclear engine in the Earth deceler-

ation stage gives a IWIEO only 6 percent less than when chemical propulsion is used.

At this point the discussion on operations at Earth return is summarized. This phase

of the study was made for a 420-day trip for which the Earth approach velocity is

67 200 fps. Atmospheric braking at Earth reduces the initial weight in Earth orbit 60 to

70 percent compared with propulsive braking to circular velocity. Atmospheric braking

from 52 000 fps has been assumed a practical upper limit for this study. With this as-

sumption a chemical deceleration stage yields lower gross weights than a nuclear stage

using an engine plus shield of 16 000 pounds. Lighter nuclear engine-plus-shield weights

are required and/or the limiting entry velocity must be lower for the nuclear stage to be

superior to the chemical stage.

Variation of effect of atmospheric entry velocity with mission duration. - The effect

of atmospheric braking varies with the mission duration primarily because the Earth ap-

proach velocities vary. The Earth approach velocities are shown in figure 15(a). For

the fast trips the approach velocities vary only over the narrow range of 65 000 to

70 000 fps. The approach velocities for the slower trips are much lower, being for the

most part less than 45 000 fps.

The variation of IWIEO for several values of atmospheric entry velocity is shown in

figure 15(b). High atmospheric entry velocities (e. g., up to 52 000 fps) are an important

factor in reducing weight for all the fast trips primarily because the Earth approach ve-

locities are high and because the general AV level is higher for the fast trips, which

makes the weights more sensitive to changes in AV. For the slow trips the use of atmos-

pheric entry at velocities up to the approach velocities is helpful in reducing the weight,

but high entry velocities, say above about 45 000 fps, are of no value in reducing weights.

An entry velocity of 43 000 fps should be within post Apollo technology. Thus, the slow

trips offer a comparatively easy atmospheric entry problem at Earth return.

In summary, when a lifting (hypersonic L/D = 1.0) atmospheric entry and landing

vehicle is assumed, the use of atmospheric braking from speeds up to 52 000 fps is a

very powerful way of reducing the IWIEO for trips of 600 days and less in duration. For
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trips longer than 700 days, atmospheric entry is less effective in reducing weight, entry

velocities up to about 43 000 fps give most of the possible weight reduction, and higher

entry velocities are not generally required.

Effectof MissionDurationon Initial Weightin EarthOrbit

At this point it is convenient to further discuss the variation of IWIEO with mission

duration with respect to

(1) Some of the factors determining this variation

(2) The significance of the variation
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sion duration.

(3) Some factors affecting the choice of mission duration

It can be seen from figure 15(b) that the fast trips show local minimums in weight at a

mission duration of about 490 days and decreasing weight with increasing atmospheric

entry velocity. The lowest weight, however, occurs for mission durations of about

1000 days. The weights for these slow trips are, however, only slightly lower than those

of the best fast trips.

The two factors largely responsible for the variation of IWIEO with mission duration

are the propulsive AV and the weights delivered to Mars. These factors are presented

against trip duration in figure 16. For the fast trips, the propulsive AV's show a local

minimum near 490 days and decreasing values with increasing atmospheric entry velocity

as did the IWIEO. In general, for the fast trips the IWIEO's faithfully follow the trends

of the AV's.

The propulsive AV's for the slower trips are significantly lower than those for the

fast trips, but the IWIEO's indicate this fact only weakly. This condition is due to the
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variation of the weight delivered to Mars with mission duration (shown in fig. 16(b)). For

trips of 700 days and less in duration, the stay time at Mars is 40 days and four of the

seven-man crew descent from the spaceship in its circular parking orbit to the surface of

Mars. For trip durations of 800, 900, and 1000 days the stay times are 100, 450, and

450 days, respectively, and all seven of the crew descend to the surface. The Mars

landing system weights vary accordingly. The weight is about 80 000 pounds for trips of

less than 700 days, but it increases to about 310 000 pounds for the 900- and 1000-day

trips. The weight is larger for the longer missions both because more men descend to

the surface and because more scientific and life-support equipment are landed to support

the men for the longer stay time. The weight of equipment to be landed requires still

further weight to perform the atmospheric entry and landing maneuver. Thus, in spite of

the reduced AV's for the slower trips compared with the fast trips, the IWIEO's

(fig. 15(b)) are only slightly less because of the increased Mars landing weights for the

slow trips. The sharp minimum in IWIEO (fig. 15 (b)) at 700 days occurs because for

shorter trips the _ AV increases, while for longer trips the increase in Mars payload

overrides the decrease in _ AV.

When the various trip durations are compared, it should be kept in mind that the fast

trips permit a maximum of 160 man-days (four men for 40 days) on the Mars surface.

The actual time on the surface may be somewhat less than 40 days because the time spent

in landing and takeoff maneuvers. The 1000-day mission, on the other hand, has a larger

weight of scientific equipment and permits about 3150 man-days on the surface (seven men

for 450 days) or 20 times more than the fast trips. The slow trips thus offer the possi-

bility of a much more extensive exploration of Mars.

A discussion of the significance of the segments of the curves which show increasing

weight with increasing trip time, that is, fast trips to the right of the minimum weight

trip time (fig. 15(b)), is also warranted. All the missions of figure 15(b) assume that the

vehicle departs from Earth at the beginning of the trip time and comes back to Earth at

the end of the trip time. This assumption is useful to find the trip time yielding minimum

IWIEO. Having found the minimum, one can inquire as to what mission of 600-day dura-

tion will yield the lowest IWIEO. One answer is to first wait on the Earth's surface for

110 days and then do a 490-day mission. Alternatively, a terminal stay at Earth could

be hypothesized. Thus the best 600-day trips should be constructed with initial or

terminal waits at Earth. In general, regions of the curves (fig. 15(a)) where the weight

increases with increasing mission duration are of little interest.

RadiationShielding

The radiation shield weight is a weight carried throughout the mission to protect the
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Figure 17. - Effectof using Earth decelerationstagepropellant for
radiation shielding. Atmospheric braking at Earthfrom 52000 sibly contribute to radiation shielding.

fps; nuclearpropulsion. Their effect is generally less than the

effect of using the propellant for

shielding and is not considered herein. The IWIEO is presented against theratio of re-

quired radiation shielding weight to the weight of propellant approaching Earth, for inert

shielding and propellant shielding.

The propellant weight for the Earth deceleration in this illustration is 37 000 pounds,

which corresponds to the 420-day mission with an atmospheric entry velocity of 52 000 fps.

The previous calculations correspond to the circled point, that is, to inert shielding that

serves only the shielding function and with a shield weight equal to the propellant weight

required for deceleration, Ws/_¢¢ p = 1.0. For the case of inert shielding (upper curve),
the IWIEO increases or decreases linearly from the circled point with increases or de-

creases in the required shield weight. If the required shield weight is zero (Ws/W p = 0),
the IWIEO is 24 percent less than that for the circled point.

If propellant is used for shielding (lower curve), then the IWIEO is independent of the

shield weight as long as the required shielding weight is less than the propellant weight;
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that is, Ws/W p < 1.0. Also the IWIEO is at a level 24 percent below the case of inert

shielding (circled point). For a still larger shield weight (Ws/W p > 1.0), the IWIEO
again increases with increasing shield weight. It can be seen from these curves that the

greatest percent reduction in IWIEO for using propellant for shielding occurs when the

shield and propellant weights coincide (Ws/W n = 1.0). If the shield weight is small or
large compared with the propellant, the advantage of propellant shielding is diminished.

Another implication of these calculations is that there is no reduction in IWIEO for

higher atmospheric entry velocities if the shield weight is equal to the propellant weight

for an Earth atmospheric entry velocity of 52 000 fps. In terms of figure 15(b) (p. 36),

which is for inert shielding, the reduction in 1WIEO for increasing the entry velocity from

52 000 to 67 000 fps can also be achieved while retaining the 52 000-feet-per-second entry

velocity by eliminating the inert shielding and using the Earth deceleration propellant for

shielding.

The effect on IWIEO when using propellant shielding as compared with using inert

shielding of 37 000 pounds is shown in figure 17(b) as a function of mission duration.

Propellant shielding can reduce the IWIEO about 24 percent for the fast trips near mini-

mum weight. This concept is of little importance for the slower trips (T m > 700 days)

because the atmospheric entry velocities are within the expected future technology, that is,

less than 45 000 fps.

Some of the physical characteristics that are desirable for fluids when they serve as

both radiation shielding and propellants are the following:

(1) High specific impulse to reduce the propellant weight

(2) Good radiation shielding characteristics, which means high percentage of hydrogen

or low Z atoms; for example, the combinations Bell 2 + H20 2 and B2H 6 + OF 2

(3) High density for low structural weights and high values of shield surface density

(lb/sq ft) for a given weight

(4) Low sensitivity to radiation, that is, little or no decomposition or deterioration

due to radiation

(5) Room temperature storability for compatibility with the crew environmental re-

quirements

(6) Low toxicity in case of a leak

(7) Insensitive to meteoroid shocks

(8) Pumpable for transfer from command module shield to the Earth deceleration

stage tanks

Candidate chemical propellants are Bell 2 + H20 2 (room temperature storables) and

B2H 6 + OF 2 (mild cryogenics). Hydrogen, which would be used with a nuclear propulsion

system, has the disadvantages of low density and low temperature, which will cause sys-

tem weight penalties that must be accounted for if hydrogen is to be considered for a

radiation shield.
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Effect of allowable crew dose. - Thus far somewhat arbitrary values have been taken

for the radiation shield weight. The required shield weight is determined by the incident

radiation flux, the shielded volume, the interposed shielding density, and the allowable

dose to the crew. The present shielding analysis is discussed in detail in appendix B.

Some of the important effects are reviewed herein. The two major categories of radiation

dose are the background radiation and the class 3+ solar flares. The dose from both

these categories varies with mission duration. Also the dose from the class 3+ flares

varies with mission perihelion.

The background radiation is taken as the sum of the doses from the smaller solar

flares, which have a frequency higher than one per month, and the dose from the galactic

radiation. For the shield surface densities considered here, 300 pounds per square foot

or less, the dose from galactic radiation is not attenuated but slightly increased because

of the secondary radiation generated in the shielding. This dose is taken as independent

of shielding weight. The dose from the frequent solar flares is assumed to be that in the

living module, which has a shield surface density of 6 pounds per square foot.

The galactic radiation tends to vary inversely with the solar activity (because of the

associated solar magnetic fields), while the dose from the smaller solar flares tends to

vary directly with solar activity. The same type of compensation tends to occur with

distance from the Sun. Hence, the dose due to background radiation is assumed to be

essentially independent of launch year and trajectory, and it was taken as I. 4 rem per

week. The accumulated background radiation dose thus depends only on mission dura-

tion.

For flares of once a month frequency, the crew is assumed to be in the command

module where the total dose will be small, that is, less than 1 rem.

The giant solar flares of the 3+ class occur with an average frequency of about once

in 4 years. The flux from these flares is assumed to be that of the envelope flare of

reference 32 and to vary inversely with the square of the distance from the Sun. For

shield design purposes, one such flare is assumed to occur at or near the mission peri-

helion although the probability of this occurring is rather remote. The mission peri-

helions against trip duration are shown in figure 18. For the slow and intermediate

trips (Tm ) 700 days), the mission perihelions are at Earth so the flux measured at

Earth will be that felt by the vehicle and crew. For the fast trips (Tm _ 600 days), the

mission perihelions are as low as 0.36 astronomical unit for a 500-day trip. For the

420-day trip it is about 0.5 astronomical unit. In this case the flux would be four times

that at Earth's distance. Giant solar flares at low perihelions can thus have an important

influence on the required shield weights. The Earth's Van Allen belts contribute only a

small dose, and Mars was considered to have no trapped radiation.

The previous sources expose the crew to primarily proton and neutron doses. Per-

haps the least known of the factors affecting shield weight are the human body's ability to
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recover from proton and neutron doses received at various dose rates and the extent of

permanent and/or temporary body damage that should be allowed. The effect of these

two factors will be illustrated. As an example of the significance of the dose levels being

considered, reference 33 states that for a 100-rem acute dose i0 percent of the crew will

become ill but will not be permanently injured.

In figure 19 the solid curves present the shielding weight required around the com-

mand module to result in several values of dose to the crew. If it is assumed that the

body does not recover from the radiation dose it receives, then the total accumulated

during the trip should be limited. The upper solid curve to the left shows shield weights

for 100-rem accumulated dose (the probability of not exceeding the doses given is 0. 99).

The shield weight rises sharply with increasing trip duration. The shield weights are

below I00 000 pounds only for trips faster than 415 days. If the accumulated dose is

allowed to go to 200 rein, the shield weights are less than i00 000 pounds for trips

faster than 900 days. Now, for the fast trips (Tm ___600 days) the shield weights are
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generally less than the 37 000 pounds previously assumed.

A significant fraction of the accumulated dose results from the background radiation.

If it is assumed that the body partially recovers from this radiation (ref. 34) then the

contribution of the background radiation to the equivalent acute dose is much reduced,

and as a consequence, larger doses from the giant flares can be tolerated. This in turn

leads to lower shield weights. The curves labeled i00 mea-rem refer to the maximum

equivalent acute dose in terms of Roentgen equivalent man that occurs during the trip.

This maximum occurs immediately following the giant flare assumed at the mission peri-

helion for fast trips. For the slow trips the maximum exists after the giant flare assumed

to occur near the end of the trip. When recovery is assumed, the shield weights are less

than 15 000 pounds for the slow trips and again below 37 000 pounds for the fast trips.

The dashed curve of figure 19 shows the chemical propellant required for decelera-

tion from the Earth approach velocity (fig. 15(a) p. 36) to 52 000 fps. This propellant

weight exceeds the shielding weight required if the body recovers from the background

radiation dose and the maximum equivalent acute dose is I00 rein, or if the allowable ac-

cummulated dose is 200 rein. For the case of propellant shielding no specific shield

weight would be required for the fast trips.

The effect of the radiation shielding assumptions on the initial weight in Earth orbit

is shown in figure 20. Atmospheric braking at Earth from 52 000 fps is assumed, and

propeUant is used for shielding for the fast trips. If the dose is limited to I00 rein
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accummulated dose (dashed curve), only trip duration of less than 415 days are possible

and the IWIEOts are above 2.8 million pounds. At 415 days, the shield weight has reached

100 000 pounds (fig. 19) and further increases in shield weight do not significantly reduce

the dose (see appendix B). If 200 rem accumulated dose is allowed, the weights given by

the solid curve result. For the fast trip the minimum IWIEO is reduced from 2.8 to

about 1. 15 million pounds for a 490-day trip. The lowest weight for the slow trips,

1.6 million pounds at 900 days, is greater than that for the fast trips.

If 100 mea-rem is the limit, the weights for the fast trips are again (coincidentally)

given by the solid curve (fig. 20). For the slow trips (dash-dot curve), the weights are

reduced. The effect of reducing the shield weight from 100 000 to 14 000 pounds for the

900-day trip (fig. 17) reduces the IWIEO from 1. 6 to 1. 2 million pounds. The slow trips

for this case are comparable in weight to the fast trips.

The section on radiation shielding can now be summarized. The use of the Earth

deceleration propellant for radiation shielding can reduce the initial weight in Earth orbit

about 24 percent when the shield weight is about 37 000 pounds and when the propellant

requirements and shielding requirements are about equal in weight. The maximum radi-

ation dose that the crew should be allowed to receive and the permissible probability of

exceeding a specified dose are not well established. The assumptions about the allowable

radiation dose can have a marked effect on what trip durations are possible and on the

level of the initial weights in Earth orbit.

Calculations from here on will use atmospheric braking at Earth from 52 000 fps with

propellant shielding for the fast trips and 15 000 pounds of shielding for the slow trips

unless otherwise noted. The resulting radiation dose is arbitrarily assumed to be ac-

ceptable.

Orbital Operationsat Mars

The IWIEO depends on both the weight of the mission payload delivered to Mars and

on the interplanetary AV to arrive at and depart from Mars. Both of these factors are

affected by the operations at Mars. Considered in this section are the various parking

orbits at Mars and several operational profiles for takeoff from the Mars surface to

rendezvous with the spaceship in orbit.

Mars parking orbit. - For most of this discussion the Mars parking orbit is assumed

to be in that unique plane that contains Mars and the velocity vectors arriving and depart-

ing Mars. It is one of the functions of the guidance system to assure the attainment of

this plane. It is further assumed that the landing operation take place in the plane of

the parking orbit. The parking orbits analyzed and the maneuvers to arrive at and depart

from these parking orbits are shown in figure 21. The parking orbits fall broadly into
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two classes, circular and elliptic orbits. Figure 21(a) shows a circular orbit from which

the spaceship enters and departs directly. The previous calculations have assumed such

an orbit at i. I Mars radii. In general, the parking orbit radius could be any value, and

the effect of parking orbit radius will be studied. Figure 21(b) shows a circular parking

orbit that is attained at arrival by means of a semiellipse with a periapsis radius of

i. 1 Mars radii and an apapsis at the circular parking orbit radius. The major deceler-

ation maneuver occurs at the periapsis. A small posigrade thrust is required at apoapsis

to circularize the elliptical trajectory. The departure maneuver is the reverse of that

at arrival. Again a range of parking orbit radii will be considered, but the semiellipse

periapsis is kept constant at I. 1 radii.

Figure 21(c) shows "parallel elliptic" parking orbits for which the major axes of the

parking ellipse are parallel at arrival and departure. Arrival and departure from the

elliptical parking orbit is assumed to take place from the periapsis with tangential thrust-

ing. This is the most efficient manner for the propulsive maneuvers to occur. It is

implied here that the resulting interplanetary trajectories are the required ones.

The relative merit of these orbits will be considered in terms of the following:

(I) Their compatibility with the interplanetary trajectory

(2) Their orbital period

(3) The AV savings afforded the interplanetary maneuvers

(4) The Mars landing system weight

(5) Their effect on the initial weight in Earth orbit

One of the advantages of the circular parking orbit (figs 21(a) and (b)) is that the AV's
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of 27 Mars surface radii) has been assumed for some of the subsequent calculations.

Another factor to be considered is the loss in time available for surface exploration.

For instance, assume that the landing operation is initiated from the apoapsis of a parking

ellipse and the stay time is defined to be that between the major arrival and departure

maneuvers which occur at the periapsis of the parking ellipse. Then, the time lapse from

arrival to a landing is the time from the ellipse periapsis to apoapsis where the landing

maneuver is initiated plus approximately the same amount of time to travel from the apoap-

sis to the surface, or approximately the period of the vehicle in the ellipse. A similar

time loss may occur for the takeoff and departure maneuver. For the previously men-

tioned apoapsis of 27 Mars radii the totaI lost surface time can be 7.4 days. This time
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loss is the same for a circular parking orbit with a radius of 27 Mars radii when the

circular orbit is arrived at and departed from by means of semiellipses. This time loss

can, of course, be reduced by reducing the parking orbit radius (or apoapsis in the case

of the ellipse).

There are also other possibilities for reducing the time loss on the surface while still

retaining a long period parking orbit for the spaceship:

(I) The landing vehicle could rocket brake and enter the Mars atmosphere directly

from the interplanetary trajectory rather than from the spaceship parking orbit. Rocket

braking may even be unnecessary.

(2) The landing maneuver could be initiated near the initial periapsis of the ellipse

(or semiellipse) and involve only a short period ellipse for the landing maneuver.

(3) Rendezvous for departure could take place near the parking ellipse (or departure

semiellipse) periapsis rather than at the ellipse apoapsis.

Most of these possibilities would tend to give Mars landing and takeoff system weights

slightly less than those to be shown.

As was previously mentioned, the prior calculations of IWIEO were made by using

circular parking orbits at I. I Mars radii. The interplanetary AV data of figure 16

(p. 37) and tables IV (pp. 18and 19) and V (pp. 20and 21) are also for arriving and depart-

ing Mars from a I. 1 Mars radii circular parking orbit. Figure 22(b) shows the change

in the interplanetary AV, A(AV) (i. e., the sum of changes for arriving and departing

Mars) with change in the parking orbit radius or apoapsis. The upper solid curve is the

reduction in AV when a parallel elliptic parking orbit is used. For a given apoapsis

(radius), the AV savings is greatest for this type of parking orbit. The AV savings

rises sharply for increases of apoapsis up to about i0 Mars radii (ra = i0) and then in-

creases more slowly for greater apoapsis. The asymptotic value (ra -* _) is
i. 76 miles per second and is noted on the curve. At the previously suggested value of

ra = 27, the A(AV) is I. 64 miles per second reduction in AV. This value may be com-
pared with the total mission AV of about II miles per second for a 490-day trip that

uses atmospheric braking from 52 000 fps at Earth.

The middle solid curve is the reduction in AV when circular parking orbits arrived

at and departed from by means of a semiellipse are used (fig. 21(b)). The AV savings

increases considerably less rapidly with parking orbit radius even though the asymptotic

value is the same as for the elliptical orbit case. At ra = 27 the AV savings is
I. 03 miles per second.

In the form that these results are presented, the AV savings given by the upper two

lines are equally distributed between the arrival and departure maneuver and are inde-

pendent of mission duration (i. e., independent of the interplanetary trajectory and the

required hyperbolic excess velocity). The lowest curve in figure 21(a) gives the increase

in AV required to arrive and leave directly from circular parking orbits of various
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Figure 23. - Effectof Mars parkingorbit on Mars landing system

weightsand initial weight in Earth orbit. Mission duration, landing system weight plus the orbital
420days; staytime, 40days; single-stageMars takeoffprofile
with430-secondspecific impulse, payload of 6500 pounds. These weights

apply for missions with a 40-day stay

that use a single-stage takeoff operational profile and chemical propulsion having a spe-

cific impulse of 430 seconds. The Mars landing system weight is about 82 000 pounds for

a parking orbit with rc = 1. 1. As the circular parking orbit radius increases, the weight

increases to 131 000 pounds for _c = 12 and then decreases slightly to 127 000 pounds at

_c = 27. For elliptic parking orbits the weights reach about 100 000 pounds at _a = 27.
Finally the landing system weights and interplanetary AVts for the various parking

orbits are combined to yield the IWIEO as shown in figure 23(b). These calculations were

made for the 420-day mission with a 40-day stay and use atmospheric braking at Earth

from 52 000 fps and propellant for radiation shielding. The upper curve is for direct

entry into circular parking orbits of various radii (fig. 21(a)). The lowest weight

(1.55 million lb) occurs for a parking orbit of _c = 1.1, which is the parking orbit assumed
in the previous calculations. Higher radii yield large weight penalties. Thus direct entry

and departure from high circular orbits is not an attractive mode of operation.

The middle curve of figure 21(b) gives weights for a circular parking orbit using a
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semiellipse for the arrival and departure maneuver. At _c = 27 the IWIEO is I. 34 mil-

lion pounds as compared with I. 55 for rc = i. I, which is a 14-percent reduction in

weight. A slightly larger weight reduction is possible if higher parking orbit radii are

acceptable. In this case, the increase in landing system weight (fig. 23(a)) is more than

offset by the effect of the reduction in interplanetary AV (fig. 22(b)).

The parallel elliptic parking orbit gives the lowest weights. At _a = 27 the IWIEO

is i. 09 million pounds, which is 30 percent less than that of rc = i.i. There is little or

no additional benefit for an ellipse with a higher apoapsis. Apoapsis values as low as 5 or

I0 Mars radii still show attractive weight reductions.

The discussion of Mars parking orbits as compared with a low circular parking orbit

can now be summarized. First of all, direct entry and departure from high circular

orbits is not attractive. Entry and departure from a circular orbit at 27 Mars radii by

means of a semiellipse maneuver offers about a 14-percent weight savings but requires

two more engine restarts than the low circular orbit. The parallel elliptic parking orbit

with an apoapsis of 27 radii offers a 30-percent weight savings.

Mars takeoff profile. - The previous discussion on the parking orbit assumed a single-

stage takeoff vehicle. There are, however, other modes of operation that are attractive.

The additional modes of operation considered here are a two-stage takeoff and a so-called

tanker mode. These modes will affect the landing system weights but not the interplanetary

AV's. In the two-stage mode of operation, the total required takeoff AV is equally di-

vided between the two stages.

The tanker mode is best described by an example. The landing operation begins, for

instance, in the high circular parking orbit of the spaceship. The manned landing vehicle

is placed on a trajectory interesecting the atmosphere and lands by using atmospheric

braking and a terminal retrorocket. A tanker is maneuvered by propulsion into a low

circular parking orbit rc = I.i. The manned lander contains enough propellant to take
off and rendezvous with the tanker where it refuels and then accelerates again to rendez-

vous with the spaceship in its orbit. The landing system weights against parking orbit

radius are shown in figure 24(a) again for an engine specific impulse of 430 seconds. For

the tanker mode, these weights include the tanker weight. The general shapes of the

curves are similar to those of figure 23(a) so the discussion will center on the effects at

= 27. The solid curves apply for a landing and takeoff to a circular parking orbit. At

_c = 27 the single-stage takeoff system weighs 127 000 pounds, a two-stage system

weighs 117 000 pounds, and the tanker mode gives a weight of 97 000 pounds.

If the tanker mode of operation is applied to the elliptic parking orbit (dashed curves),

the landing system weight is reduced to 83 000 pounds as compared with i00 000 pounds for

a single-stage mode of operation. When the tanker mode is used with an elliptical parking

orbit there is little increase in landing system weight with increasing ellipse apoapsis.

The corresponding changes in IWIEO are shown in figure 24(b). For circular parking
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Figure 24: - Effectof Mars takeoff profile on landingsystemweights This discussion may be summarized
and initial weight in Earth orbit. Mission duration, 420days;
staytime, 40days; Mars takeoffspecific impulse, 430seconds, by saying that the tanker mode of opera-

tion offers reduced weights when corh-

pared with either one- or two-stage takeoff profiles for high circular or elliptic space-

ship parking orbits.

Possibility of attaining parallel elliptic parking orbit performance. - The previous

discussion has shown that significant weight reductions accrue if a parallel elliptic park-

ing orbit is used. Strictly speaking, to achieve the benefits shown, the interplanetary

propulsion to arrive and leave from the ellipse must be applied at its periapsis and tan-

gent to the direction of the motion. This can be done only if the trajectories at the Mars

periapsis arriving from and returning to Earth are matched in direction. This is not

generally the situation. Approaches to achieving elliptic parking orbit performance will

be discussed briefly here.

First, one can search for interplanetary round trips that have cotangential arriving

and leaving velocity vectors at Mars. One such class of trajectories is the nonstop (zero

stay time) gravity turn round trips discussed, for example, in reference 35. The
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610 days. Trips of these durations may

thus be of interest. The 9 10-day trip with a short stay time is also a comparatively low-

energy trip, though probably not one of interest.

Second, if the required turning angle at Mars is small, firing tangential to the ve-

locity vector along the ellipse but at a position away from the periapsis of the ellipse will

yield only a small AV penalty. For some range of turning angles this procedure will

give lower AV's than going to a circular parking by means of the semiellipse. It was

pointed out previously that the AV's associated with a circular parking orbit are in-

dependent of the interplanetary arrival and departure directions.

Third, if the vehicle thrust-to-weight ratio is small enough, appreciable turning

during the deceleration and acceleration maneuvers at Mars will occur. For some ac-

celeration levels, a parallel parking ellipse can be established. In this case there is a

tradeoff between the AV savings for the elliptical parking orbit, the gravity losses dur-

ing propulsion, and the engine weight. Also, by thrusting at an angle of attack, signifi-

cant turning can be generated for little increase in the characteristic AV.

Fourth, when turning is required, it may be most efficient to do the turning at the

Mars sphere of influence as was found in reference 35.

Fifth, if atmospheric braking from the hyperbolic approach velocity to orbit is used

at Mars, the atmospheric maneuver can also be used to generate the required turning at

Mars to establish an ellipse appropriately oriented for departure. The combined de-

celeration and turning will determine a vehicle lift-drag ratio.
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Sixth, the rotation of the line of apsides due to the planet oblateness may help provide

the required shift in the ellipse.

Seventh, the previous discussion has dealt with maneuvers in the plane of the inter-

planetary trajectory. Another interesting possibility is an elliptic parking orbit out of

this plane. To acquire the desired outbound direction a plane change is made at the el-

lipse apoapsis. The required AV is small if the apoapsis is high. In practice, for ex-

ample, an elliptical parking orbit with a 5 or I0 radii apoapsis could be used with a ma-

neuver to a higher apoapsis and a plane change made only at departure time.

There are a number of approaches for attaining parallel elliptical parking orbit per-

formance. This area warrants continued study. In general, the parallel elliptical park-

ing orbit assumption yields a lower bound in IWIEO as a function of parking orbit choice.

This bound can be approached by practical techniques.

Effect of mission duration on parking orbit effect. - The previous calculations were

for a mission duration of 420 days. The effect of parking orbit selection at other mission

durations is shown in figure 26. The initial weights in Earth orbit are compared for the

low circular parking orbit, a circular parking orbit arrived at and departed from by

means of a semiellipse, and a parallel elliptic parking orbit. The latter two parking
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orbits have a radius (apoapsis) of 27 Mars radii, and the tanker mode of takeoff operation

is used. The high circular and elliptic orbit give weight reductions at all mission dura-

tions. The minimum IWIEO occurs at about 480 days and is 0.79 million pounds. A

second local minimum occurs at 950 days and 0.93 million pounds.

Comments on assumptions. - The Mars orbital operations have been discussed pre-

suming Mars is spherical. Mars is actually oblate, which causes the parking orbital

plane to change with time and the line of apsides of the parking orbit to rotate with time.

The plane of the parking orbit at arrival must be selected so that it rotates to the desired

departure plane during the stay time at Mars. Similarly, in designing trajectories for

parallel elliptic parking orbits, account must be taken of the rotation of the line of apsides

during the stay time. Both the plane rotation and the rotation of the line of apsides vary

directly with the number of revolutions made by the space vehicle about Mars (ref. 36);

thus, a parking orbit that makes only a few revolutions during the Mars stay will be little

affected by the planet oblateness. This may be an advantage for the high circular and

elliptic parking orbits which have long periods.

The Mars landing has been assumed to take place in the plane of the parking orbit.

For a low circular parking orbit a large AV or a lifting landing vehicle would be required

to achieve a landing appreciably outside the parking orbit plane. For a highly elliptic

parking orbit, a landing outside the orbit plane can be achieved for little expense in AV

to land or takeoff. This is still another advantage for the highly elliptic or high circular

parking orbit.

AtmosphericBraking at Mars

It was previously shown that atmospheric braking at Earth could markedly reduce the

IWIEO. This leads naturally to an interest in the effect of atmospheric braking of the

entire spaceship at Mars. This effect is examined here as a function of the parking orbit

at Mars, the structure plus heat protection weight of the Mars entry system, and the

mission duration. In the previous mission profiles the complete spaceship was braked

by propulsion from the hyperbolic approach velocity to a parking orbit about Mars. The

vehicle which lands on the Mars surface from the parking orbit uses atmospheric braking

in every case.

The interplanetary trajectories used in this case differ from those of the preceeding

calculations. The launch date and outbound leg time for the preceeding calculations were

4

selected to give a minimum _ _V for a specified total mission duration and stay time
1

where _V 4 at Earth return is that for decelerating to a low circular parking orbit for
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which the circular velocity is 26 000 fps. When entry velocities at Earth from 37 000 and

52 000 fps were considered, the AV was reduced by the difference between those veloc-

ities and 26 000 fps, a constant amount for any launch date. Because the AV is changed

by a constant amount, the optimum launch date and outbound leg time are not changed (as

in calculus, the addition of a constant to a function does not affect the value of the inde-

pendent variable at which the function has an extremum). The same argument applies

when the AV's are reduced by changing the parking orbit at Mars for the cases of elliptic

orbits and the circular orbits arrived at and departed from by means of semiellipses.

The situation is different for atmospheric braking at Mars. For the previous mission

the Mars approach velocity can be quite low, that is, less than 37 000 fps, and the entire

deceleration hence can be taken by atmospheric braking. Often the AV 1 + AV 3 can be

reduced by selecting launch dates and outbound leg times that increase the Mars atmos-

pheric entry velocities. The trajectories considered in this section yield a minimum

AV 1 + AV 3 and are presented in table V (pp. 20 and 21).
The feasibility of atmospheric braking at Mars from hyperbolic velocities to orbit

(or to a landing) depends on the density of the atmosphere at Mars. The density of the

atmosphere at the surface is of particular importance. Preliminary calculations indicate

that a surface density of one-hundredth the Earth's atmospheric surface density is suf-

ficient to permit atmospheric braking of vehicles with a surface loading of I00 pounds per

square foot or less.

Effect of parking orbit. - To study how the effect of atmospheric braking at Mars

varies with parking orbit the 420-day mission was again selected. The Mars atmospheric

entry velocity for this trip is 33 500 fps. The atmospheric braking will be used to decel-

erate the spaceship from its hyperbolic Mars approach velocity into parking ellipses of

various apoapses. The elliptic parking orbit was chosen rather than the circular orbit

arrived at by a semiellipse because the orientation desired for the parking ellipse can be

achieved during the atmospheric braking maneuver. For the 420-day mission a vehicle

with a lift-drag ratio of 1/2 is adequate, for instance. The parallel elliptical parking

orbit results in the lowest propulsive requirements as was pointed out previously. If a

parallel elliptic parking orbit cannot be achieved without some AV penalty for the case

of propulsive deceleration at Mars, then the relative advantage of atmospheric braking

compared with propulsive braking will be somewhat greater than that to be shown.

In figure 27 the IWIEO for atmospheric braking at Mars is compared with that for

propulsive deceleration. Curves of weight for three values of (Ws/WG)c_ (ratio of Mars
entry vehicle structure plus heat protection plus atmosphere approach guidance and con-

trol system weight to gross weight) are given. The abscissa is the apoapsis of the parking

ellipse. The periapsis is i. 1 Mars radii. The tanker mode of takeoff operation for the

Mars landing system was used, and the weights for the landing system were given in

figure 24(a) (p. 50). At T a = I. I, a limiting case occurs in that the parking orbit is
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1.6xlO6 circular and the tanker weight zero.
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Figure 27. - Effectof atmosphericbraking at Mars on initial weight cent), again for (Ws/_VG)o, = 0.3.in Earth orbit. Mission duration, 420days; staytime, 40days;
parallel elliptic parking orbit with 1.1 Mars radii periapsis; atmo- Effect of structure plus heat pro-

pheric braking at Earth from 52000fps; nuclear spacepropulsion, tection weights. - A second effect

illustrated by these curves is the effect

of the structural plus heat protection fraction (Ws/WG)o_. At an _a = 27 doubling the
structural fraction from 0. 2 to 0.4 increases the IWIEO from 0.66 to 0.88 million pounds,

an increase of 33 percent. Thus the structural plus heat protection fraction is an impor-

tant parameter. But even for a value of the structural fraction that is believed conserva-

tive, 0. 4, atmospheric braking is advantageous. The curves of the next figure are for

_a = 27 and (Ws/WG)o_ = 0. 3 for those cases where atmospheric braking at Mars is used.
Effect of mission duration. - Figure 28 shows the Mars atmospheric entry velocities

and the IWIEO as functions of mission duration. As was the case for atmospheric braking

at Earth, the importance of atmospheric braking at Mars depends on the Mars approach

velocities. These velocities are shown in figure 28(a). For trip durations of longer than

350 days the approach velocities are less than 37 000 fps, or less than Earth parabolic

velocity. Hence, these velocities appear acceptable for atmospheric entry from a heat

protection point of view. For the fast trips the entry velocities decrease from 37 000 fps

for the 350-day trip to 20 000 fps for the 600-day trip. The entry velocities are about

34 000 fps for the trips of intermediate duration and drop to less than 24 000 fps for the

slow trips.
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The IWIEO for atmospheric braking at Mars are shown in figure 28(b) (solid curves).

These weights are compared with those for propulsive braking (dashed curves). Parallel

elliptic parking orbits with ra = 27 are assumed for both cases. For trip times less

than 470 days atmospheric braking is an advantage. This is the region where the atmos-

pheric entry velocities are high. The high entry velocities are an indication that atmos-

pheric braking has given a large reduction in the required propulsive _V.

For the slow trips, T m > 850 days, braking at Mars is a disadvantage in that it
causes an increase in the IWIEO. Atmospheric braking increases the gross weight when

the weight of structure and the heat protection for atmospheric braking exceed the pro-

pulsion system weight to accomplish the same deceleration.

A perhaps unexpected result shown in this figure is that the lowest IWIEO's occur for

the intermediate trips. These low weights are readily understandable when the high Mars

approach velocities for these trips are recalled (fig. 28(a)). It is also recalled that the

Mars payload weights are less than those for the 900- to 1000-day trips (fig. 16(b), p. 37).
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The lowest weight shown is 0.6 million pounds for the 700-day trip.

The discussion of atmospheric braking at Mars may be summarized by saying that

atmospheric braking gives the greatest reductions in IWIEO when the greatest velocity

increment is absorbed by atmospheric braking. Thus mission profiles using low circular

parking orbits are benefited more than those using elliptic orbits. Also, missions with

high Mars approach velocities benefit more than those with low approach velocities.

High approach velocities occur for trips of intermediate durations, 700 to 800 days, and

faster trips of less than about 470 days.

Direct Landingon Mars

It is recalled that the previous mission profiles all used a parking orbit at Mars.

When atmospheric braking from the hyperbolic approach velocity to orbit is used at Mars

one is led also to consider the possibility of atmospheric braking the entire spacecraft

to a landing on the Mars surface, thus eliminating the parking orbit altogether. In par-

ticular, in this mode the propellant for the return to Earth and the Earth return mission

payloads are carried to the Mars surface,. Such a possibility is considered in figure 29,
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which presents IWIEO against mission duration for several mission profiles. The solid

line is the lowest IWIEO previously shown for using a parking orbit at Mars. The dashed

line is for the direct landing of the complete spaceship. For the fast trips the weights for

the direct landing mode are about three times those for the orbital mode. For the slow

trips the factor is about I. 5. In general, the direct landing mode does not appear attrac-

tive on a weight basis although operationally it is the simplest.

Other Propellant Sources

For the previous mission profiles all the propellants and, of course, the hardware

are assumed to originate on the Earth surface. Other sources of propellant such as at

Mars, in Earth orbit, and on the Earth's Moon can be considered.

Propellant collection at Mars. - The import of propellant collection at Mars for the

direct landing mode is shown in figure 29 (dash-dot curve). In this case, a source of

hydrogen is assumed to exist on the Mars surface. No weight has been charged to the

collection system, thus implying that either it is a very lightweight or it has been previ-

ously delivered. The weights for this mode of operation are comparable to the low weights

achieved by the orbital modes. If the propellant collection system weight must be carried

on the mission to Mars, its weight is most likely to be a small fraction of the collected

propellant if it operates over a long period of time. Thus missions with a long stay time,

that is, the mission durations of 800 to I000 days are most likely to benefit from propel-

lant collection.

Although not considered here, it may be anticipated that propellant collection in a

Mars parking orbit would also yield reduction in IWIEO if a lightweight collection is

hypothesized. In general, propellant collection at Mars is a possible way to achieve low

IWIEO, but this mode is not a likely one for early missions.

Other propellant sources. - In addition to the Earth's surface and Mars there are

several other possible sources of propellant that will be briefly considered, in Earth
orbit and at the Earth's Moon.

Reference 37 describes a possible air collection system that orbits in the low density

air at a high altitude about the Earth and uses a nuclear electric propulsion system to

overcome the momentum of the collected air and the air drag. This system could collect

oxygen from the atmosphere to be used in a chemical propulsion system for the Mars trip.

Some indication of the potential advantage of such a scheme is given in table VI _. 22)

for trips of several durations. For a datum, the second column gives the AV required

to launch propellant from the EarthTs surface onto a trajectory to Mars, which is the con-

ventional mode of operation. If the source of propellant is in an Earth orbit, the AV to

acquire the Mars trajectory is reduced by a factor of from 2 to about 4. Not considering

the weight of the collection system, this reduction in AV will result in a significant

58



reduction in the weight to be launched from the Earth's surface, although the initial

weight in Earth orbit of the Mars mission vehicle itself would remain unaffected.

If the Moon is considered as a propellant source for the Mars mission, a base is

needed on the Moon with a substantial electrical generating capacity and, for instance, a

source of water either as ice or in chemical combination in the rocks. The water can be

electrolyzed to yield hydrogen and oxygen for a chemical space propulsion system, or the

hydrogen alone can be used as the expellant for the nuclear system. With the Moon as a

propellant source the most efficient mode of operation appears to be to either rendezvous

the propellant and spaceship during a close pass of the spaceship with the Moon (the sub-

sequent discussion of a lunar swingby is appropriate), or to rendezvous the propellant and

space vehicle at a point on the outbound leg to Mars beyond the Moon. In either case

the AV to accelerate the propellant from the lunar surface to the outbound leg of the

Mars trip is about the same and is given in the last column of table VI. Again there is a

reduction factor of from 2 to 4 in the AV compared with the launch of propellant from

the Earth's surface. (A rendezvous in a lunar orbit would require that the spaceship from

Earth undergo the additional AV's of arriving at and leaving from the lunar rendezvous

orbit. )

While each of the propellant collection and/or generation systems offers a significant

potential AV advantage, the total system in turn implies a significant technological

development and much added complexity. Propellant sources other than the Earth's sur-

face are hence not attractive for the early manned Mars mission, although they are of

interest for possible subsequent transportation systems.

Two-PhaseMission Profiles

The previous mission profiles were all single-phase profiles; that is, there was

only one depart-from-Earth-orbit launch period (which occurred at the beginning of the

mission) and all the components of the mission travelled together along the same tra-

jectory. Considered here are a number of two-phase mission profiles; that is, missions

that entail two or more launch periods.

Elliptical orbit pickup at Earth return. - In this mode the crew is enclosed in a light-

weight capsule and propulsively decelerated into an elliptic parking orbit at Earth return.

A recovery vehicle is then accelerated from Earth orbit to rendezvous with the Mars

capsule and return the crew to the Earth's surface. A second Earth surface to orbit

launch is thus required at the end of the mission to orbit the recovery system.

The application of the elliptic orbital pickup to the fast mission profiles is considered.

Let all of the maneuvers through the chemical deceleration to 52 000 fps velocity relative

to Earth occur as before. Then there are 13 850 pounds available for deceleration from
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52 000 fps to an ellipticvelocity, that is, a velocity less than 37 000 fps. In the previous

cases, the 13 850 pounds were for an atmospheric entry vehicle that carried the crew

through the deceleration from 52 000 fps to a landing on the Earth's surface. Based on

the earlier discussion of Earth deceleration operations, a chemical stage is preferable

to a nuclear one for the small payload to be decelerated for the profileunder considera-

tion. With a specificimpulse of 430 seconds a totalcapsule weight of 3500 pounds can be

decelerated to 36 800 fps. Of the totalcapsule weight about 2400 must be allowed for the

real payload (i.e., crew, data, and samples). Thus 1100 pounds are availablefor a pres-

sure capsule, a lifesupport, and a communication system. This capsule is not subject

to high g's and is not required to perform an atmospheric entry or landing so a light

weight is possible.

If the previous capsule weight is acceptable, then the IWIEO shown on the previous

figures for the fast trips with atmospheric entry from 52 000 fps applies also for the first

phase of the ellipticorbitalpickup mode.

The totalweight required in Earth orbit is increased by the weight of the recovery

system, which is estimated to be about 70 000 pounds. This weight, however, is launched

near the end of the mission and does not require the use of the launch pad at mission

launch time.

The ellipticorbitalpickup mode would be relativelymore attractiveiffor some rea-

son the Earth atmospheric braking vehicle weights were larger than estimated or ifthe

chemical rocket specificimpulse were higher than assumed.

The two-phase ellipticalorbitalpickup mission profile is a possible alternativeto

the single-phase mission using atmospheric braking at Earth return, and thisprofile

avoids the necessity of developing an Earth entry capabilityfor velocitiesabove 37 000 fps.

Hyperbolic rendezvous at Earth return. - This two-phase mission profile also applies

primarily to fast trips. As was illustratedin the earlier discussion of atmospheric brak-

ing at Earth, the IWIEO at mission launch is quite sensitive to the Earth deceleration

system weight. In the limit this system need not be carried on the Mars trajectory at

all; instead, the Earth deceleration system can rendezvous with the Mars vehicle near

Earth at Earth return as shown in figure 30(a). The recovery vehicle is firstaccelerated

from the low circular parking orbit about Earth into a highly ellipticaltrajectory. On

the inbound leg of the ellipsethe recovery vehicle is accelerated a second time to match

the velocityvector and positionof the spaceship returning from Mars. The Mars crew

then transfers to the Earth deceleration vehicle, and the Earth deceleration is accom-

plished, for example, by a propulsive deceleration from the approach velocity (ifabove

52 000 fps) to 52 000 fps followed by an atmospheric entry.

The propulsive velocity increments that must be applied to the recovery system are

shown in table VII (p. 23) for several mission profiles and triptimes. Columns 2 and 3

give the total AV that must be applied to the Earth deceleration system ifitis carried
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Figure 30. - Trajectories for two-phasemissions.

on the trajectory to Mars and accelerated back toward Earth. Column 2 assumes a low

circular parking orbit and column 3 an elliptic parking orbit at Mars. Columns 4 and 5

apply for rendezvous of the recovery system with the spaceship near Earth. Column 4

is a limiting case where rendezvous takes place at 1. 1 Earth radii. Column 5 is the more

practical case where rendezvous takes place at a distance of 10 Earth radii. When col-

umns 2 and 3 are compared with 5 it is interesting to note that for trip times between

360 and 600 days, for instance, the propulsive AV to get the Earth deceleration system

to the mission Earth approach velocity is about the same or lower for carrying the Earth

deceleration system to Mars and back than for maneuvering near Earth. As a conse-

quence, when compared with the single-phase profile, the profile with hyperbolic rendez-

vous at Earth will reduce the IWIEO at mission launch, but the total IWIEO, the sum of

the weights for the mission and for the crew recovery system, will be greater. This is

shown in figure 31 for the case of inert radiation shielding, a low circular parking orbit

at Mars, and an atmospheric entry velocity at Earth not exceeding 52 000 fps. The solid

line gives the IWIEO for the single-phase profile for which the Earth deceleration stage

is carried to Mars and back and uses atmospheric braking from 52 000 fps. The solid

curve is also the weight of the manned mission phase of the two-phase mission using

elliptical orbit pickup at Earth return. The lowest curve (dashed) is the IWIEO for the
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manned Mars mission phase of a two-phase mission using hyperbolic rendezvous at

Earth return. The dash-dot curve is the sum of the weights for the mission and the re-

covery phases of the two-phase mission. For the 420-day trip, the IWIEO for the manned

mission phase is reduced from 1.96 to 1.3 million pounds for the single-phase mission,

while the total IWIEO for the two phases of the mission is increased to 2.2 million

pounds. The weight represented by the difference between the dashed and the dash-dot

lines is the recovery system weight, which is launched near the end of the manned por-

tion of the mission.

The primary advantage of this profile is to reduce the IWIEO required at mission

launch. It has the disadvantages of increasing the total launch weight and decreasing the

overall mission reliability because of the rendezvous maneuver that must be performed

within close time limits at Earth return.

Hyperbolic rendezvous at Earth return has been discussed when inert shielding is

assumed. If propellant shielding is used this profile reduces, in the limit, to the elliptic

orbit pickup mode.
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Because of the nonfailsafe nature of this trajectory, it may be undesirable for the

primary mission mode. The hyperbolic rendezvous at Earth, however, could serve as

a rescue mode of operation for one of the other mission profiles.

Hyperbolic rendezvous at Mars departure. - The trajectories associated with the

hyperbolic rendezvous at Mars departure are shown in figure 30(b). The manned phase

trajectory can be one of the fast trip trajectories previously used for the fast missions.

Perhaps 30 days after the Earth departure of the manned phase, an unmanned phase, for

which the payload is the Earth deceleration stage, is launched from Earth orbit. The

trajectory for the unmanned phase is of the nonstop round-trip type and uses a propulsion

gravity turn at Mars to match the inbound leg of the manned phase. The rendezvous be-

tween the two mission phases can take place anywhere on the inbound leg between Mars

and Earth. The required AV's and launch dates for these mission profiles are also

given in table VII (p. 23) (columns 6 and 7). It is noted that the AV's (column 7) for the

unmanned Earth deceleration system are much less than they were for the previous case

of hyperbolic rendezvous at Earth (column 5) and are also less than for the manned stop-

over trajectory (column 2).

The IWIEO for this profile are also given in figure 31for the fast trips (Tin< 600 days).
The weight of the manned phase is again the lower curve (dashed). The dash double-dot

curve is the total IWIEO, which includes the recovery system. This mode of operation

yields lower IWIEO than the single-phase mission (solid line). For this mission profile,

two weights each substantially less than that for a single-phase mission are launched

from Earth at dates from 20 to 40 days apart for trip durations of 360 to 500 days.

Two-phase Earth departure. - While the previous two-phase profiles were primarily

of interest for the fast trips, the two-phase mission to be discussed now is of interest for

both fast and slow trips. The slow trips have a long stay time at Mars and a correspond-

ingly large weight is used for surface exploration (see fig. 16(b), p. 37). In the two-phase

Earth departure profile the surface exploration weight is sent ahead of the manned phase

(several months or a synodic period ahead) and is landed directly on the Mars surface by

atmospheric braking. The IWIEO for the system are also shown in figure 31 (dash triple-

dot line) for the slow trips (T m _ 700 days). The total weight is little different from that

for the single-phase mission profile (solid line); however, the required weight may now

be launched from Earth orbit in two about equal "packages" at times separated by about

a month or a synodic period. The separation time between launches can be made more

flexible for an increase in system weight.

The launch of a separate phase to deliver the Mars surface exploration weights to

Mars can also be applied to the fast trips and yields a weight reduction for trips faster

than about 420 days.

The discussion of two-phase mission profiles is now summarized. The elliptical

orbit pickup mode is of particular interest because it eliminates the requirement for
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Figure 32. - Typesof perturbedMars stopoverround-trip trajectories.

Earth entry velocities above 37 000 fps. The hyperbolic rendezvous at Earth return is

probably of interest only as an emergency recovery mode. The hyperbolic rendezvous

after Mars departure offers a reduction in IWIEO. The use of a separate phase to send

ahead the Mars exploration equipment reduces the weight to be launched at any one date

for slow and fast trips and can reduce the total IWIEO for very fast trips.

PerturbedTrajectories

In this section single-phase missions are again considered. The single-phase inter-

planetary trajectories considered previously consisted of a single conic section (with the

Sun as one focus) for the outbound leg and another for the inbound leg. Another class of

trajectories occurs when one leg of the trajectory is made up of segments of two different

conic sections pieced together. Such a trajectory occurs when the trajectory of one leg is

perturbed in transit by a force. The result of the perturbation can be to reduce the mis-

sion propulsive velocity increments and possibly the IWIEO for a given mission duration.

The source of the perturbation may be a midcourse propulsion usually near the mis-

sion perihelion, a close pass to Venus (Venus swingby), or a lunar swingby. The first two

possibilities mentioned will be compared with an unperturbed trajectory and each other to
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bring out their common features. Sketches of a typical set of perturbed trajectories are

shown in figure 32. The corresponding AVIs and leg travel times and angles are given

in table VIII (p. 24). The unperturbed trajectory is considered first. It has a 500-day
4

duration and yields close to minimum _ AV as a function of trip duration. The out-
1

bound leg is short. The inbound leg is long, has a heliocentric travel angle of about 300 °,

and passes through a perihelion of 0.4 astronomical unit. It is this inbound leg that is a

candidate for replacement by a two-segment conic, one kind of perturbed trajectory.

Perihelion propulsion. - The term perihelion propulsion is used to refer to those

trajectories that use thrusting at or near the trajectory perihelion in addition to propulsion

at the planet termini. Figure 32(b) illustrates the kind of perihelion propulsion trajectory

considered. It consists of two semiellipses that are cotangential with each other at their

common perihelion. The first of these semiellipses is also cotangential with the orbit of

Mars at Mars departure, and the second is cotangential with the orbit of Earth at Earth

arrival. The total heliocentric travel angle is 360 ° . The difference in velocity between

the two semiellipses at their perihelions is made up by impulsive tangential thrusting.

When this type of trajectory is used for the inbound leg, the perihelion propulsion is in

the retrograde direction, or a braking. (Ehricke in reports subsequent to ref. 8 has

suggested using a solar-heated hydrogen expansion rocket for the perihelion propulsion. )

The analysis of a more general class of double conic trajectories is reported in refer-

ence 38. There the location of the midcourse impulse is not restricted to the trajectory

perihelion but is selected to minimize the total AV. This class of trajectories gives

lower total AVis than do the present perihelion propulsion trajectories. However, the

present trajectories are expected to give an indication of the merits of such a midcourse

impulse.

The characteristics of two perihelion propulsion trajectories that yield near minimum

total AV and of an unperturbed trajectory are given in table VIII (p. 24). (The labels to

the left of the double line apply to the columns to the left of the double line and the labels

on the right to the columns on the right. The trips outlined on the left proceed from top

to bottom while those on the right proceed from the bottom upward. With this arrange-

ment numbers in a given row are to be compared. ) Compared with the unperturbed

trajectory, perihelion braking on the inbound leg yields a slightly reduced AV to leave

Mars and an Earth arrival AV that is reduced from 8.3 to 3.6 or by 4.7 miles per sec-

ond. A AV of i. 7 miles per second is required at perihelion, which is at about

0.38 astronomical unit. The total mission AV has been reduced from 16. 2 to 13.8 miles

per second. If the AV at Earth return is assumed absorbed by atmospheric braking and

hence omitted from the AV summation, the remaining AV sum is less for the unper-

turbed trajectory. Also for atmospheric braking at Mars and Earth the AV summation

is less for the unperturbed trajectory. Figure 9 (p. 17) shows the total AV sum for

unperturbed trajectories and for trajectories using perihelion braking for a range of total
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trip times. The perihelion propulsion trajectories give comparatively low _ AV's in

the range of trip times from 480 to 650 days, which is the region between the fast and

intermediate trips.

The previous discussion has dealt with perihelion braking on the inbound leg of a

short-long trajectory (fig. 32(b), p. 64). An alternative is to use perihelion acceleration

on the outbound leg of a long-short trajectory (fig. 32(c)). This trajectory is approximately

a reflection of the short-long trajectory in the line of the Earth-Mars opposition. In the

ideal situation (c,oplanar orbits with the line of opposition and the line of apoapsis of both

planetary orbits concident)AV 1 becomes AV4, AV 2 becomes AV3, etc. The
extent to which this AV interchange holds in the actual situation may be seen by compar-

ing the characteristics of the two perihelion thrusting trajectories in table VIII (p. 24).

The two perihelion thrusting trajectories are very nearly mirror images.

The total AV foi _ the two trajectories is about the same. The AV that can be ab-

sorbed by atmospheric braking, however, differs because of the interchange of AV's

mentioned previously. With atmospheric braking at Earth only, the AV sum is less for

the perihelion braking on the inbound leg of a short-long trajectory because of the higher

Earth approach AV for this case. With atmospheric braking at both Earth and Mars the

AV sum is less for perihelion thrusting on the outbound leg of a short-long trajectory

because of the higher Mars arrival AV's. These AVTs will of course be reflected in

the IWIEO's.

The individual propulsive AV's for trips of several durations are given in table IX

(p. 25) for perihelion propulsion on the inbound leg and in table X (p. 26) for perihelion

propulsion on the outbound leg. To determine the IWIEO, estimates were made of the

TABLE XIL - EARTH RETURN MISSION PAYLOAD WEIGHTS

Perihelion thrusting

Inbound leg, Outbound leg,
lb lb

Mission duration, days 476 556 596 500 to 650

Command module, living module 27 000 27 000 27 000 27 000

exclusive of shielding, plus

space power and fixed part

of life support system

Radiation shielding 19 400 27 000 48 000 11 000

Earth entry vehicle 11 750 11 750 11 750 11 750

Total 58 150 65 750 86 750 49 750
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fixed weights carried to but not through the Earth deceleration maneuver (table XII). The

weight of the first group of items is the same as that used in the previous calculations.

For thrusting on the inbound leg, where the mission perihelion occurs on the inbound leg,

the shield weights were taken as those to give 100 mea-rem (see fig. 19, p. 42). The

mission perihelion (i. e., the lower of the two-leg perihelions) is the same each trip of

this group but the shield weight to maintain a given dose increases with increasing trip

time to offset the effect of the increased exposure time. The combination of a low peri-

helion, 0. 375 astronomical unit, which gives a large flux from the flare assumed to occur

at perihelion, and the long trip times, which give large total background flux, make the

shielded weights sensitive to changes in trip time. (The propellant for perihelion thrust-

ing could be used for radiation shielding prior to the thrusting to reduce the dose. )

The Earth atmospheric entry velocities can be below 37 000 fps if the radiation shield

weight is also retropropellant. Hence, an entry vehicle weight of 11 750 pounds was used.

For thrusting on the outbound leg, the mission perihelion occurs on the outbound leg.

The perihelion of the inbound leg is 1 astronomical unit and only 11 000 pounds of shield

is required on the inbound leg according to the curve of 100 mea-rem (fig. 19, p. 42).

Again the Earth entry velocities can be below parabolic, if the shielding is also propellant,

so the entry vehicle weight is 11 750 pounds. At the mission perihelion, which occurs on

the outbound leg, radiation shielding in addition to the 11 000 pounds carried to the end of

the mission is required, for instance, about 48 000 pounds for a 100 mea-rem at 600 days.

This shielding is assumed to be provided by the chemical propellants on board the space-

ship. (The Mars landing system weights are the same as those used previously.)

The IWIEO's for the perihelion propulsion mission profiles are given in figure 33

for atmospheric braking at Earth and propellant shielding. The bars of figure 33(a) com-

pare the IWIEO's for perihelion thrusting on the inbound leg of the short-long trajectory

with perihelion propulsion on the outbound leg of a long-short trajectory for several mis-

sion profiles. Generally perihelion propulsion on the inbound leg gives the lower weights.

An exception occurs when atmospheric braking to a low circular parking orbit is used at

Mars. For this case perihelion propulsion on the outbound leg gives a slightly lower

weight.

In figure 33(b) the weight for perihelion propulsion on the inbound leg is compared

with several single conic mission profiles. If the atmospheric entry velocity at Earth is

limited to 37 000 fps, the perihelion propulsion trajectory gives a slightly lower weight

than the conventional single conic trajectory (the first bar). If entry velocities of

52 000 fps are allowed, the single conic trajectory gives the lower weight. These results

are consistent with AV summations of table VIII (p. 24). The last result means that if

a 52 000 fps Earth atmospheric entry velocity is permissible, a zero midcourse impulse

is best.

In figure 33(c) the variation of the weight with mission duration for perihelion propul-
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sion on the inbound leg is compared with that for single conic trajectories previously

discussed.

Perihelion propulsion appears of interest primarily in the vicinity of a 550-day trip

duration, which was the time selected for figures 33(a) and (b). For shorter trip times

the weight increases primarily because the _ AV increases. For longer trips the weight

increases both because, as discussed earlier, the radiation shielding weight increases,

and because for trips longer than about 580 days the _ AV increases.

Propulsion at Mercury. - A variation of the perihelion propulsion trajectory was

briefly considered. The perihelion of these trajectories is about 0.38 astronomical unit

or less. The orbit of the planet Mercury is about 0.39 astronomical unit. The efficiency

of adding the perihelion AV can be improved if it occurs within the gravitational field of

Mercury. The period of Mercury is about 80 days and timing the trajectory to intercept

Mercury is not difficult. On the other hand, Mercury has a small mass and a correspond-

ingly small gravitational field. The reduction in AV for thrusting at 1. 1 Mercury radii

is 0. 12 mile per second as compared with a total mission AV of 7 to 14 miles per second

(table VIII, p. 24). The reduction in IWIEO for perihelion thrusting at Mercury compared

with perihelion thrusting alone is small, perhaps several percent if the penalties for

guidance and timing are neglected.

Venus swingby. - Venus in addition to Mars is a close neighbor of the Earth and an

object of scientific curiosity. One of the advantages of a Mars stopover mission using

a Venus swingby is that it offers the opportunity for a close observation of Venus. A

second advantage of a Venus swingby, and the one of primary concern here, is that it can

reduce the AV's for the Mars mission. The trajectory for a Venus swingby on the out-

bound leg and for a total trip time of 550 days is shown in figure 32(d). It is geometrically

similar to the trajectory for perihelion thrusting on the outbound leg in that the heliocen-

tric travel angle between Earth and Mars exceeds 360 ° by only 10 °. The travel angle

between Earth and Venus exceeds 180 ° , and the pass at Venus is on the dark side.

The AV's, leg times, and travel angles for trips of several durations are given in

tables VIII and XI (pp. 24 and 27). The trajectory for a 550-day Venus swingby on the

outbound leg (table VIII) is similar in terms of AV's to that for perihelion thrusting on

the outbound leg with two exceptions: First, the perihelion propulsion is eliminated, and
4

second, the AV to leave Earth is reduced. The _ AV and AV 1 + AV 3 for the 550-1

day Venus swingby mode are lower by 2 to 4 miles per second than the corresponding
3

values for either the unperturbed or perihelion propulsion trajectories. The _ AV is
1

about the same for the Venus swingby and unperturbed trajectories.

The Earth return mission weights for the Venus swingby are the same as those given

in table XII (p. 66) for perihelion propulsion on the outbound leg and for the same reasons.
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The Mars landing systems are also the same. An additional 300 fps of guidance AV to

be provided by the chemical midcourse correction system is assumed to assure the cor-

rect passage at Venus.

The IWIEO for the Venus swingby are presented in figure 34. The bar graph of fig-

ure 34(a) compares several mission profiles. The Venus swingby profile yields the

lightest weights when atmospheric braking is used at Mars. Atmospheric braking at Mars

is very beneficial because the Mars approach velocity is comparatively high, about

30 000 fps. (The approach velocities of the other trajectories were given in fig. 28,

p. 56).

If propulsive braking is used at Mars, the Venus swingby profile, which has an Earth

atmospheric entry velocity of 37 000 fps or less, gives weights comparable to the conven-

tional single conic trajectories with 52 000 fps entry velocities. Table VIII (p. 24) shows

that the Earth approach velocities for the Venus swingby are sufficiently low so that by

using the propellant as radiation shielding the entry velocities can be less than 37 000 fps.

In this instance, the effect of the Venus swingby has been to eliminate the desirability,

from a weight saving viewpoint, of developing a high velocity (e. g., 52 000 fps) Earth

atmospheric entry capability.

Figure 34(b) indicates the range of mission durations over which the Venus swingby

mode is applicable. Low weights occur for trip durations of 480 to 650 days. Table XI

(p. 27), however, shows that for the 480-day trip the Earth approach velocity is much

higher than for the 550-day trip but still significantly lower than those for the unperturbed

500-day trajectory. At 700-day trip time the unperturbed intermediate class of trips with

atmospheric braking at Mars yields weights about the same as the 650-day Venus swingby

also with atmospheric braking at Mars. When the factors of solar radiation, trip time,

IWIEO, and low Earth approach velocities are considered, the most attractive Venus

swingby trips occur for 500- to 550-day trips.

The preceding discussion applies to a Venus swingby in 1978-80. A favorable swing-

by depends on the appropriate configuration of the planets Mars, Earth, and Venus. As a

consequence, a swingby on the outbound leg is not possible or not favorable in all synodic

periods. In some synodic periods a swingby on the inbound leg will be favorable. By

analogy with the cases of perihelion thrusting, such a trip will be approximately a mirror

image of the one in 1978-80. Since for the 550-day Venus swingby (table XI, p. 27) both

AV 1 and AV 4 are low, low Earth entry velocities will occur for a swingby on either the
outbound or inbound leg. However, for a swingby on the inbound leg the Mars approach

velocity will be significantly reduced because AV 2 and AV 3 become interchanged. In
this case the pronounced weight reduction for using atmospheric braking at Mars will be

much reduced or eliminated.

In summary, in the 1979-80 synodic period, missions based on a Venus swingby tra-

jectory can yield IWIEO's with Earth atmospheric entry velocities of about 37 000 fps
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abscissa. The percent reduction in AV is greatest for the lowest unperturbed AV's.

The greatest reduction also occurs for the closest practical perilune. The values shown

are for the limiting case of a pass at the lunar surface. For the trip times of interest,

the reduction in AV 1 is 3 percent or less.

Table XIII presents the interchange ratio between the percent change in AV 1 and the
percent change in IWIEO. This ratio has a value of about 0.7 for nuclear systems, but is

generally higher for chemical systems (1.0 to 1. 3). The lunar swingby thus offers the

greatest weight savings for chemical systems. By combining the percent AV reduction

with weight exchange ratio, it is seen that a lunar swingby at Earth departure offers a

potential weight reduction of about 3 percent.

The use of a lunar swingby at Earth return will be less favorable than at Earth
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TABLE XIII. - EXCHANGE RATIO BETWEEN WEIGHT AND

PROPULSIVE VELOCITY INCREMENT

Propulsion Specific Mission duration, T, days

system impulse,
420 i000

I,
sec

aRatio of percent change in initial weight

in Earth orbit to percent change in

AV I, AWG/WG/AVI/VI

Nuclear 850 0.74 0.70

Chemical 460 i. 3 i. 0

apropulsive deceleration at Mars.

departure because the approach velocities are generally higher than those at departure and

because of the lower stage weights. In general, a lunar swingby is of small or no impor-
tance in the reduction of the IWIEO.

Other Mission Profiles

While many mission profiles have been considered, there are many more than can be

conceived. Several other mission profiles or variations of the previously described pro-

files are briefly discussed here.

Two option stay time. - The mission profiles considered up to this point had for their

objective either a short (40 days) or a long stay (i00 to 450 days) at Mars. By sending

ahead to Mars the weight for a long Mars exploration time, as discussed for the two-phase

mission profiles, any of the fast trips then offer the crew the options of staying for the

short time and returning to Earth or of staying the long time and performing a thorough

exploration of Mars before returning to Earth. Because of its flexibility, this concept

may be of interest for planning now when little is definitely known about mission objectives

and what stay times and mission times are feasible or desirable.

Phobos or Diemos landing. - There may be an advantage to parking the spaceship on

one of the moons of Mars, Phobos or Diemos, and conducting the Mars landing from there.

The very least advantage this may offer is the manned exploration of that moon. The pre-

vious discussion of operations at Mars (figs. 21 to 26, pp. 45 to 52) is applicable with

some degree of approximation to the possibility of a moon landing because the orbital

planes of the moons are near the requisite parking orbit planes and the gravity of the

moons is small so that a landing would involve little propulsive weight.

When a circular parking orbit is selected that is the same as the orbit of one of the

moons, a landing on that moon could be accomplished, providing of course that the timing

is appropriate. The radii of the orbits of Phobos and Diemos are, respectively, 2.8 and

7.0 Mars radii and their direction of rotation is direct. Either direct or retrograde
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parking orbits are possible at Mars for the same magnitudes of the propulsive velocity

increments and hence the same system weights.

The previous results are reviewed as they apply to a Mars moon landing. From

figure 23(b) (p. 48) a direct entry in the orbits of the moons will increase the system

weight as compared with that for using a low circular parking orbit at Mars. Because of

the comparatively low altitudes of the Mars moons (r = 2. 8 and 7.0), entering their orbit

by means of semiellipses will yield an IWIEO at best only slightly less than the low cir-

cular parking orbit. Thus, the potential weight reduction of using a high circular parking

orbit (e. g., ¥c = 27) or of using an elliptic parking orbit would be sacrificed if a landing
of the spaceship on a Mars moon is undertaken.

If an important objective of the Mars trip is the exploration of one of its moons, the

spaceship could be parked in a favorable parking orbit and an excursion vehicle sent to a

moon.

Convoy mode. - Another possible variation in mission profileis the convoy mode

(ref. 8). In this mode, the spaceship on its outbound leg consists of two or more inde-

pendent units, for instance a passenger and two or more freightphases, with interchange-

able parts. This mode reduces the number of rendezvous required in Earth orbitbut

substitutes rendezvous on the outbound leg or at Mars. Although the convoy mode is

not expected to reduce the IWIEO, itdoes improve the probabilityof a safe return for the

crew.

Chemical SpacePropulsion

The previous sections have all presumed the use of nuclear rocket space propulsion.

However, nuclear rockets of the assumed characteristics have not yet been developed.

It is therefore of interest to examine the performance attainable with conventional chemi-

cal rockets. For this study hydrogen-fluorine propellants with a specific impulse of

460 seconds are assumed for the space propulsion. A specific impulse of 430 seconds is

still used for the deceleration at Earth return and for midcourse corrections.

The IWIEO for several mission profiles is shown in figure 36. The general trends

of the curves with mission time and with changes in mission profile are similar to the

changes already discussed for nuclear propulsion so only some general comments will be

made. The weight for a chemical system for the less sophisticated profiles considered,

for instance as characterized by 37 000 fps Earth entry velocity, inert radiation shielding,

and low circular parking orbits at Mars as shown by the upper curve on the left side of

figure 36, is 7.5 million compared with 2. 5 million pounds for the nuclear system for a

500-day trip. If the Earth atmosphere entry velocity were 26 000 fps, the chemical sys-

tem would be seven times heavier than the corresponding nuclear system. The weights
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for the 900- to 1000-day trips are about 2.3 million compared with 1.2 million pounds for

the nuclear system. Thus chemical systems can be much heavier than nuclear systems.

However, the weight of the chemical systems is markedly reduced by refinements in mis-

sion profile. For example, with a 52 000 fps Earth atmospheric entry velocity, propel-

lant shielding, and an elliptic parking orbit at Mars (solid line), the weight of the chemical

systems is down to 1.7 million pounds for a 500-day mission, about twice that of the

nuclear system. The 900- to 1000-day missions have weights of about 1.5 million pounds.

Systems using a direct landing with chemical propellant collection at Mars and the per-

turbed trajectories, particularly the Venus swingby with atmosphere braking at Mars,

also yield attractive weights. In general, the chemical systems with sophisticated mis-

sion profiles can yield attractive weights.

Except for the Earth deceleration stage, consideration has been given to interplanetary

propulsion that is either all nuclear or all chemical. In some circumstances it may be

desirable to use combinations of nuclear and chemical propulsion. For instance, if the

payload to be accelerated are smaller than or comparable in weight to the nuclear engine

weight, then nuclear propulsion does not yield an efficient stage. (It is recalled that the

nuclear propulsion was in some cases less efficient than chemical propulsion for the

Earth deceleration stage because of the relative weights of the payload and engine). If,

contrary to the indications of the many studies, hydrogen storage in space for long periods

of time or near Mars proves impractical, the use of nuclear rockets for some stages may

be excluded. The IWIEO of systems using a combination of chemical and nuclear propul-

sion will be intermediate between the weights for all the nuclear and all chemical systems.

Aborts

Providing for the safe return of the crew to Earth in case of an emergency is of para-

mount importance for a manned mission. Examples of emergencies requiring an abort

are the severe but noncatastrophic damage to the spaceship as might result from a mete-

oroid hit or a serious malfunction of part of the spaceship like excessive propellant boil-

off. Several aspects of the abort problem will be considered here.

One way to approach the abort problem is to design the interplanetary trajectory to

assure a return to Earth. The outbound leg of the stopover trajectory can be the same as

that of a nonstop round trip. Three kinds of nonstop round trips were analyzed in refer-

ence 35. They are catagorized by the type of maneuver used at Mars: (I) a gravity turn,

which as its name implies uses only the gravity of Mars to change the trajectory; (2) a

propulsion gravity turn, which uses propulsion to supplement the turning due to gravity

and also to change the energy of the trajectory; and (3) an atmospheric turn, where aero-

dynamic forces generated by an aerodynamic vehicle flying in the Mars atmosphere are
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used to both deflect the trajectory and change its energy. The appropriate type of nonstop

round trip depends on the stopover mission profile;

Appropriate to all stopover mission profiles is an abort based on a gravity turn at

Mars; these are sometimes referred to as stopover trajectories with a "free return. ,9

In this case the outbound leg of the stopover trajectory would be the same as that of a

nonstop gravity-turn round trip. Figure 25 (p. 51) presented such nonstop round trips. In

1979 they occur for nonstop mission times of 380, 520 to 580, near 720, and near 1095

days. Stopover missions having an outbound leg the same as the outbound leg of the

shorter of these nonstop missions are of interest. As was pointed out in the section en-

titled "Possibility of attaining parallel elliptic parking orbit performance, '_ these same

nonstop round trips can also be a basis for short-stay-time (perhaps 5 days) stopover

trajectories with parallel elliptic parking orbit. The combined advantages of a free re-

turn abort capability and a parallel elliptic parking orbit make these trips attractive.

A comparison is made between the trajectories for a 540-day trip with minimum pro-

pulsive requirements and one with gravity-turn abort capability in table XIV (p. 78,

columns 1 to 4). The conclusion to be drawn from these data is that for the 540-day trip

the difference between the minimum AV trajectory and the trajectory with abort capa-

bility is small. The launch date is 5 days earlier and the _ AV is increased from 9.67
3

to 9.79 or I. 2 percent for the case of full atmospheric braking at Earth (i. e., _ AV).
1

A much greater degree of freedom in selecting outbound leg times exists if some pro-

pulsion is permitted at Mars so that the nonstop propulsion-gravity-turn round trip can be

used for abort. A comparison between the trajectory for minimum propulsion AV and

one with propulsion-gravity-turn abort capability for 420- and 500-day trips is also made

in the table XIV (last six columns). For the 420-day trip the two trajectories coincide.
3

For the 500-day trip the launch date occurs 50 days earlier and the _ AV is increased
1

from 7.91 to 8.57 or 8.3 percent when full atmospheric braking at Earth is assumed.

For the propulsion-gravity-turn abort, either stage two or three may provide the

propulsion (noted in table XIV) for the turn at Mars. Stage three will provide adequate

AV whether a low circular or elliptic parking orbit is used at Mars. If stage two is to

be used for the turn at Mars, stage three and the Mars payloads would be jettisoned, then

stage two would produce about twice the mission AV 2. This AV is larger than that

required for the propulsion gravity turn. Thus, for both trip times (420 and 500 days)

and for either a low circular or elliptic parking orbit at Mars, either stage two or

three (Mars arrival and departure stages, respectively) yield more than the AV re-

quired for an abort by means of a propulsion gravity turn. In general, it seems reasonable

to conclude that stopover trajectories with propulsion-gravity-turn abort capability are

possible for small penalties in _ AV in the range of trip times from 420 to 500 days.
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TABLE XIV. - COMPARISON OF PROPULSION REQUIREMENTS FOR STOPOVER ROUND TRIPS WITH MINIMUM PROPULSIVE VELOCITY INCREMENT AND

WITH ABORT CAPABILITY

[Stay time at Mars, 40 days. ]

Nonstop gravity turn abort Nonstop propulsive gravity turn abort

Mission duration, 540 days Mission duration, 420 days Mission duration, 500 days

Stopover round trip Abort Stopover round trip Abort Stopover roundtrip Abort

trajectory trajectory trajectory
4 4 4

Minimum _ AV With abort Minimum _ AV With abort Minimum _ AV With abort
1 capability 1 capability 1 capability

Earth departure date, Julian day, 2444 - 060 055 055 220 220 220 190 140 140

Outbound leg time, days 260 260 260 180 180 180 260 260 260

Propulsive velocity increment, AV,

miles/sec:

Leaving Earth 4. 75 4.91 4.91 2. 56 2. 56 2. 56 2. 21 2. 70 2. 70

aArriving Mars 2. 34 2. 33 0 2. 58 2.58 b2.37 1. 50 2. 12 bl. 64

CArriving Mars 1.42 1. 41 .... 1. 76 1.76 .... 0. 68 1. 30 ....

aLeaving Mars 2. 58 2. 55 .... 3.75 3.75 .... 4. 20 3. 75 ....

CLeaving Mars 1. 66 1.63 .... 2. 93 2.93 .... 3.38 2.93 ....

Arriving Earth 6.80 6.70 6.77 7.82 7.82 7.75 8.30 7.82 7.75

a4

_AV, miles/sec 16.47 16.49 11.68 16. 8 16. 8 12.68 16. 2 16.4 12. 09
1

a 3

_-_AV, miles/sec 9.67 9.79 4.91 8.89 8.89 4.93 7.91 8.57 4.34
1

acircular parking orbit at Mars, Yc = 1.1 radii.
bFor propulsive gravity turn at Mars, used at sphere of influence leaving Mars.

Cparallel elliptic parking orbit at Mars, _a = 27 radii, _'p = 1. 1 radii.



For stopover mission profiles using atmospheric braking at Mars it is appropriate to

consider nonstop atmospheric-turn round trips as a basis for an abort.

In addition to aborts in the vicinity of Mars there are two other classes of aborts,

near Earth and on the outbound leg. There is little that can be done to improve the return

trajectory once the spaceship has left Mars, so no consideration has been given to aborting

from the return leg.

If the abort occurs near Earth, the abort AV requirement would be no more than

the hyperbolic excess velocity, which for a 420-day mission is about 3.1 miles per sec-

ond. This is within the propulsion capability of each of the remaining propulsion stages,

that is, either the arrive Mars stage, the depart Mars stages, or the Earth deceleration

stage for the fast trips.

Aborts on the outbound leg are illustrated in figure 37(a), where the positions of the

spacecraft at various times along the way are noted. The minimum AV abort trajectory

if an abort were initiated at 90 days is shown by the broken line. The spacecraft arrives

back at Earth before the planned return time.

The results of a study of a family of minimum AV trajectories are summarized in

figures 37(b) and (c). Abort AV and mission time are plotted against the time of abort

initiation. The lowest abort AV occurs in the early part of the trip; thereafter, the

abort AV requirement increases steadily in time until the vicinity of Mars is reached

where a propulsion gravity turn at Mars yields a reduced AV requirement. As before

for an abort during the outbound leg of the journey, the propulsive capability of stage two

or three is available to change the trajectory. If stage two were damaged, the full AV

capability of stage three (3.75 miles/sec for a low circular parking orbit at Mars or

2.93 for a parallel elliptic parking orbit) is available. If stage three were damaged, it

would be jettisoned, and in the abort application stage two will provide about 5 miles per

second (or 3. 5 miles/sec from a parallel elliptic orbit), which is about twice the planned

AV. The AVis available for abort in general exceed the AV's required, except for a

period up to 70 days prior to Mars arrival. At Mars the propulsion gravity turn is within

the available propulsive capability.

There is a sharp rise in abort trip time after the vehicle leaves the Earth's sphere

of influence, as indicated by figure 37(c). The abort mission times are generally less

than planned trip times except for aborts occurring within about 40 days of Mars arrival.

A propulsive abort with one stage out, which satisfies the same constraints as the

original trajectory, is possible at any point of the outbound leg of the trip. Although only

the 420-day trip in 1979 was investigated in detail, a preliminary analysis of other trip

times and launch years indicates that the previous result is valid for most fast trips of

the short-long category.

The possibility of aborting with one stage out when one of the available propulsive
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Figure 37. - Aborts from outbound leg of a planned420-dayMars
trip with a40-daystay, 1979-80.

stages is the stage for decelerating at Mars is an argument against using atmospheric

braking at Mars.

To summarize, the fast mission profiles can be designed to include abort capability

for little or no weight penalty.

Sensitivity of Initial Weight in Earth Orbit to Inputs

In the previous section, the initial weight in Earth orbit was estimated for a number

of mission times. The estimated gross weights depend on the inputs of interplanetary

vehicle payloads and on the propulsion system characteristics. Although an effort was

made to make realistic estimates of the values for these inputs, there is a considerable

variation in the estimates of values for the inputs between different investigators. Thus
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it is informative to study the sensitivity of the initial gross weight to arbitrary variations

in the inputs. That study is the purpose of this section.

Effect of mission payloads. - For this study, two 420-day single-phase mission pro-

files, each giving a high (H) and an intermediate (I) gross weight, were selected. The dis-

tinctive characteristics of each of the mission profiles are as follows: for case H,

atmospheric braking from 37 000 fps at Earth return, 37 000 pounds of inert radiation

shielding, and a low circular parking orbit at Mars; and for case I, atmospheric braking

from twice circular velocity at Earth, propellant radiation shielding, and a low circular

parking orbit at Mars. The sensitivity of the other mission profiles and mission times

may be judged from these.

The effect of the interplanetary vehicle payload weights on the IWIEO is presented in

figure 38. It is noted that the curves are all linear; the circled points correspond to the

values assumed in the calculations prior to this sensitivity section, while the square

symbol corresponds to twice these values. For reference, it is observed that if all the

mission payloads were doubled simultaneously the IWIEO would at most double. Thus the

effect of varying any one of the mission payloads individually must have less than a one-

to-one effect on the IWIEO.

Figure 38(a) shows the effect of the Earth atmospheric entry vehicle weight. This

weight undergoes all the interplanetary propulsive AV's. For case H, doubling this

weight increases the IWIEO 36 percent. The percent increase would have been larger but

for the large fixed weight of the nuclear engine used in the propulsive stage, which sup-

plements the atmospheric braking, and does not scale up with an increase in stage weight.

For case I, chemical propulsion is used to supplement the atmospheric braking, and

doubling the Earth entry vehicle weight increases the IWIEO about 47 percent. In this

case, the advantage for decreasing the Earth entry vehicle weight is not the same as the

penalty for increases in weight (i. e., the slopes of the curves differ for weight increases

and decreases from the circled value). This behavior results from the hypothesized co-

incidence in the weight required for radiation shielding and for the weight of propellant

required for partial rocket braking at Earth, at an Earth entry vehicle weight of 13 850

pounds. If the entry vehicle weight is increased, the chemical propellant must be cor-

respondingly increased to provide the same propulsive deceleration. A propellant weight

in excess of the radiation-shielding weight requirement then exists. If the entry vehicle

weight is reduced, however, there can be no corresponding reduction in the propellant-

shielding weight because the shielding requirements must be satisfied. Part of the

shielding could, however, now be solid rather than propellant.

Figure 38(b) shows the effect of the weight jettisoned just prior to the deceleration at

Earth. For the H mission profile this weight consists of the command module, the living

module, the power supply, the fixed part of the food-air system, and the solar radiation

shielding. For the I profile the solar flare shielding is not included because this weight
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serves also as propellant for the propulsive part of the deceleration at Earth. The slopes

of the two curves are the same, but because for the H profile this weight item is larger,

the IWIEO is more sensitive to doubling this weight. The IWIEO is changed 32 percent

compared with 22 percent for the I profile.

Figure 38(c) shows the effect of the Mars exploration weight, that is, landing systems

plus probes and orbital observation equipment. The slopes of the two curves are the

same, as are the weights of the exploration systems. Because the H profile has a higher

IWIEO, it is less sensitive to doubling the weight of the Mars exploration system. In

this case the weight increases 18 percent as compared with 29 percent for the I profile.

For the I profile the percent increase in IWIEO for simultaneously doubling all the

mission payloads is i00 percent as expected. For the H profile the increase is 78 per-

cent. This result occurs for the H profile because the nuclear engine for the Earth de-

celeration is a minimum (fixed) size and does not scale with the gross weight of that stage.

The abscissa of the previous variations have been normalized to a percent of the nom-

inal or the circled value, and a comparison of the sensitivity of the initial weight to the

interplanetary vehicle weights is made on this basis in figure 38(d). Both mission profiles

are slightly more sensitive to a given percent change in the Earth entry vehicle weight

(curve a) than to the Mars exploration weight (curve c). The importance of the weight

jettisoned at Earth return (curve b) depends largely on whether this weight group includes

inert radiation shielding or not. When inert shielding is carried, this weight group is

more important than the other mission payloads (profile H). If propellant shielding is

used and the radiation shield weight is not included in the life-support group, then the

life-support weights are less important than the other mission payloads (profile I).

If the highest values shown in table I (p. 3) (the b values) had been used for each

component of the mission payloads, the IWIEO's would have been about 70 percent higher

than those for the reference point s (circled points).

Because the mission payload weights vary from profile to profile, the sensitivities

of the IWIEO to variations in the mission payloads will be different for the different mis-

sion profiles. The previous discussion has illustrated some factors affecting the sensi-
tivities.

Effect of propulsion system performance. - Considered in figure 39 is the effect of

engine specific impulse, engine weight, and effective propellant tank weight ratio. Again

the circled point corresponds to the assumptions made in the mission profile analyses.

Some specific examples are considered first. If the engine specific impulse is decreased

from 850 to 750 seconds, then the IWIEO is increased from i. 55 to 2.05 million pounds or

32 percent. NERVA test performance, interpreted in terms of a 40:1 area ratio nozzle

and a vacuum environment, has already attained a 750-second impulse (ref. 39). If, in

addition, the engine weight is increased to give a corresponding reduction in the engine

thrust-to-weight ratio from 8 to 4, the IWIEO is increased to 2.4 million pounds or
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4x106 another 17 percent. A thrust-to-weight
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Figure 39. - Effectof propulsion systemparameterson initial weight it is important to achieve the perform-
in Earth orbit. Mission duration, 420days; stay time, 40days;
atmospheric braking at Earth from 52 000fps; propellant shielding; anee levels assumed in the body of the
circular parking orbits at 1.1 Mars radii; nuclear spacepropul- report.
sion.

In figure 40 a number of mission

profiles are compared for two sets of propulsion system inputs. The profiles with nuclear

propulsion show that the IWIEO for the less sophisticated profiles, those with high pro-

pulsive AVis (profiles i and 2), are very sensitive to the performance of the propulsion

system. The sophisticated profiles (profiles 3, 4, and 5) with low AV are much less

sensitive to the performance of the propulsion system. It is for this reason that profiles

3, 4, and 5 can be accomplished for reasonable weights by using chemical propulsion as

shown by the last three bars.

The chemical systems because of their higher weight tend also to be more sensitive

to changes in performance. However, because chemical systems presently exist, there

is less uncertainty in the values of some of the propulsion system parameters for chemi-

cal systems than for nuclear systems_ For example, a specific impulse of 425 seconds
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1 Atmospheric braking at Earth from 37O00fps; inert radiation shielding; Yc = 1.1 radii

2 Atmospheric braking at Earth from 52000fps; propellant radiation shielding; Fc = 1. 1radii

3 Atmospheric braking at Earth from 52000fps; propellant radiation shielding; rc = 27 radii
(enteredand exitedby meansof semiellipses), _p = 1.1 radii

4 Atmospheric braking at Earth from 52000fps; propellant radiation shielding; parallel

elliptic parking orbit at Mars, ra = 27 radii, _p = 1. 1radii
5 Atmospheric braking at Earth from 52000fps; propellant radiation shielding; parallel

elliptic parking orbit at Mars acquiredby atmosphericbraldng, ra = 27 radii, _p= 1.1 radii

12x106

-- ChemicalEarth Space
-- return propulsion propulsion

10 -- Nuclear spacepropulsion

1-777] I 430 850

_ i _ Fe/We 67 8

_ 8 -- ii WT/Wp O.05 O.125

o

_ - r---] i 430 750

;_i;i LJ Fe/We 67 4.=_ 6-- _i_i
WT/Wp O.05 O.250

"_ - _,_ Chemicalspacepropulsion

- - i ii7:.= 4 _ i!::i I 430 460•- "'" _ili i!iil D_ _ !;;; iiiii Fe/We 67 100
// .'_x .,. i!ill WT/Wp 0.0.5 0.05

D- "" H "_ "_" _ Fe!We 67 100
"" ,,, WT/Wp O.1 O.1

1 2 3 4 5 2 3 4 5
Mission profile

Figure 40. - Sensitivity of various mission profiles to combinedvariations of propulsion systemparameters. Mission dura-
tion, 420days; staytime, 40days.

is presently obtainable with hydrogen-oxygen propellants, and engines with thrust-to-

weight ratios of 67 do exist. Techniques of improving the existing values are known.

For example, specific impulse may be improved by using hydrogen-fluorine and higher

pressure engines with larger expansion ratios. The tank fractions of both chemical and

nuclear systems are not well known.

Another point made by comparing the open and cross-hatched bars of figure 40 is

that optimistic propulsion system characteristics show the effect of profile changes in a

conservative light. With regard to the previously discussed effect of profiles the effects

shown would all have been larger had lower levels of propulsion system performance

been assumed.
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CHANGESFROMREFERENCEMISSION

Atmospheric entry velocity at Earth, fps
Typeof propulsion to atmospheric entry velocity I
Radiation shielding I I

Inert Nuclear 26000 / 37 26Inert Nuclear 37000
Inert Nuclear 52000 _,2
Inert Chemica{ 52000 _z

Radiation dose I
100 mea-rem Inert /_52
200ae-rem Propellant _//////////A_z
100ac-rem Propellant _52

Parking orbit at Mars (apsesin Mars radii)
Lowcircular 1. 1 //y_z/J_//l152 [] Total initial weight in Earth orbit
High circular by meansof semiellipses 1. 1, 21

Parallel elliptic 1. 1, 27_52 [] Passengerphaseweight

Typeof takeoff from Mars surface (to high circular parking orbit)

Sing,e stage _252Tanker mode

Operations at Mars

Propulsive braking to parallel elliptical orbit I__ 52
Atmospheric braking to parallel elliptical orbit V/////_sz

Direct landing bymeans of atmospheric braking _52
Direct landing bymeans of atmospheric braking with propellantcollection on surface

Two-phaseprofiles (inert radiation shieJding)
Referencesingle phase I//J/J/J///JJ///./J52
Elliptical orbital piekup at Earth return !!i_E:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::37
Hyperbolic rendezvousat Earth return iii_i_£_£!£!Zi_i_iiiiii_i_i_iZiZi_i_i}/JJJJJ_52
Hyperbolic rendezvous at Mars departu re _i_i!:.!:.!:.!:.!:._:._:._:._i_:._:._:.{:.!:._:.!_///152

Perturbed trajectories; mission duration, 500to 550 days
Unperturbed _/'/_/,.//'///////////'J37

Unperturbed _37 52
Venus swingby; propulsive braking at Mars 37
Venus swingby; atmospheric braking at Mars

Perihelion propulsion, propulsive braking at Mars r////_/J/Jf//_ 37

IMission duration and staytlme in days Tm Ts

Four men land 420 40 _52
Four men land 500
Four men land 700 40 /_J_37
Seven men land 950 4_

Sensitivity to nuclear propulsion system parameters(specific impulse, sec; I

engine thrust to weight; tankweight fraction) I FeN/e WT/Wp

850 8 O.125 _////_/.//////_52
85O 8 .250 9////////////////A52
850 4 .250 _52
800 4 .250' _52

Comparisonof nuclear and chemical spacepropulsion
Circular parking orbit at 27 radii by meansof a semiellipse and

propulsive braking at Mars
Nuclear 850 8 .125 Y/y////_J///_52
Chemical 460 67 .05 X_///J//J////////J////'///_J52

Atmospheric braking to a parallel elliptic orbit at Mars
Nuclear 850 8 .125 7"_52
Chemical 460 67 .05 _52
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I 2 3 4 5 6x106

Initial weight in Earthorbit, Ib

Figure 41. - Summary of elfects of mission profile on initial weight in Earth orbit for seven-manMars landing mission. Referencemethod has the following characteristics: nuclear space
propulsion; mission duration, 420days; stay time, 40 days; single phase;Mars parking orbit, 1. 1 radii; single-stage takeoff from Mars surface; pr0pe]lant for radiation shielding; dose,
100 mea-rem; seven-man crew, four men land. (Propulsion for deceleration at Earth return to atmospheric entry velocities notedat top of bars, 1O00'sfps. )
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CONCLUDINGREMARKS

A summary of the effects of mission profile on the initial weight in Earth orbit for a

seven-man Mars landing mission is presented in figure 41.

Based on the insights gained from the mission analysis, the technical areas needing

further research are pointed out, and a profile for an early mission is suggested.

TechnicalAreasforResearch

The preceding analysis and discussion indicate that a final decision as to the best

mission profile depends on increased information in the following areas:

1. Mission objectives: the desired length of stay time and the number of men desired

on the surface, the surface mobility requirements, the number and location of

landing sites, the scientific experiments to be performed

2. Rendezvous in planetary orbits and in solar orbits

3. Space environment: meteoroid and radiation fluxes from 0.30 to 1.5 astronomical

units and in the vicinity of Earth and Mars

4. Man's capabilities: his physical reaction to acute and chronic proton and neutron

radiation dose and his physiological and psychological reaction to long mission

times and low g's

5. Explorability of the Mars surface and the Mars surface environment in terms of

radiation, meteoroids, locomotion, and winds

6. Long-time life-support systems up to 1000 days

7. Earth atmospheric entry up to 52 000 fps or more

8. Performance of nuclear engines

9. Hydrogen tankage, including thermal and meteoroid protection, fuel transfer, and

structural weights

10. High specific impulse, high density, and space storable, and Mars surface stor-

able chemical propellants

11. Mars atmospheric entry from at least Mars parabolic speed (for landing from a

Mars parking orbit)

12. Hyperbolic entry velocities at Mars

(a) for the landing systems

(b) for the entire spaceship

13. Feasibility of propellant generation at Mars
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Criteria for Selectinga Mission Profile

To select a mission profile some criteria of merit must be adopted. Most criteria

of merit are ultimately related to minimizing cost, that is, minimizing the required com-

mitment of the national resources of material and manpower. The cost of fulfilling a

number of objectives can be considered; for instance, one can consider minimizing the

cost of a specific mission, the cost of the overall and continuing space program, which

includes the above specific mission, or the cost per unit of information gained. While it

is beyond the scope of this report to estimate actual costs, several factors related to cost

can be considered.

Earth surface to orbit launch weight. - An important part of the cost of a mission is

in the cost of delivering the space vehicle into orbit about the Earth. The IWIEO discussed

in the preceding sections is a relative measure of this cost. Another factor influencing

launch costs is the required launch rate. For the two-phase mission profiles, the launches

occur in two periods separated by months or years.

Advanced development. - The cost of the research and development to reach the tech-

nology required to accomplish the mission is in part chargeable to the mission. This

would include the development of new boosters or Earth orbital rendezvous techniques if

they are required.

Compatibility with overall space program. - Perhaps more important than the cost

of a specific mission is the cost of achieving the overall long-range space objectives. It

is desirable to develop a technology that will be applicable to many missions. This tech-

nology in turn helps determine the desirable mission profile.

Data acquired. - The objective of the mission is to acquire data. Some mission pro-

files are more favorable in this respect than others, for instance, those with long stay

times.

Timing. - The information to be acquired is presumably of value and so it is desir-

able to acquire this information as soon as practical.

Crew safety. - For manned missions the survival of the crew, even in the event the

mission fails in some of its scientific aspects, is of paramount importance. This re-

quires mission profiles that have abort capability from any point in the mission

Probability of mission success. - A high probability of mission success or a reliable

mission is, of course, desirable. This suggests preferring simple operations, well

established technologies, and a short mission duration,

SuggestedMission Profile

There are many attractive mission profiles to choose from, each with advantages

and disadvantages. There is the 1000-day trip with its attractively long exploration
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times and comparatively easy propulsion and atmospheric entry requirements, or there

are the Venus swingby combined with atmospheric braking at Earth and Mars and the

700-day trip both with their very low weights. The profile to be described, however,

seems to best fit all the criteria, although some of the reasons to be given for selecting

this profile are matters of judgement rather than of facts.

The mission profile chosen for the 1980 time period is an unperturbed trajectory of

420 days in duration. This mission duration was chosen over the 1000-day missions on

the basis of reliability and crew psychology, and because the 420-day trip offers abort

possibilities that the 1000-day trip does not offer. It was chosen over the 500- to 550-day

missions which includes perihelion propulsion and Venus swingby trajectories, to avoid

the combination of low perihelions and long trip times that can result in high radiation

doses or high shield weights. Trip times shorter than 420 days yield rapidly increasing

IWIEO's.

Nuclear propulsion is used for all the space maneuvers except that of Earth approach

because its potential offers lower weights than chemical propulsion. Chemical propulsion

is used for the Earth deceleration and Mars landing and takeoff maneuvers because it is

more efficient than nuclear propulsion for the light payloads associated with these maneu-

vers.

At Earth return the real mission payloads, the crew, samples, and data are deceler-

ated to an elliptic orbit about Earth. These payloads are then picked up by a recovery

vehicle launched from Earth at the end of the mission. This system was chosen over

atmospheric braking at Earth return for several reasons:

1. The IWIEO for the two systems appear about equal, but propulsive braking should

be cheaper to develop.

2. The propulsion system for the Earth deceleration is part of the system for aborting

from orbit about Mars, as will be discussed subsequently.

3. The propulsive deceleration can be more reliable than the atmospheric braking

system because of the dual nature of the deceleration system described next.

The Earth deceleration system is to consist of two potentially independent units. The

first has the crew as its payload. The second has the samples and data as payload, which

weighs about the same as the crew. Thrusting is initiated prior to perigee. In the event

of a malfunction of the system with the crew, the samples and data are jettisoned and

their propulsion system used to decelerate the crew. The samples and data may then

make an atmospheric entry from the full hyperbolic approach velocity.

The Mars parking orbit is an elliptic orbit with its major axis nearly perpendicular

to the plane of the interplanetary transfers. The elliptic orbits yield lighter weight than

a low circular orbit. The plane chosen for the ellipse permits observation of all of the

Mars surface and landing any place in one hemisphere with little weight penalty.
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Propulsive deceleration is used at Mars. This can probably be developed to man-

rated status cheaper and sooner than atmospheric braking, and atmospheric braking offers

only a small weight advantage over propulsive braking when an elliptic parking orbit is

used. Also, this propulsion stage is available for abort propulsion in the event of damage

to the leave-Mars stage on the outbound leg of the trip.

The Mars landing system is viewed as consisting of three manned-type landers. (The

mission analyses assumed two. ) Each lander has the capability of landing two men and

returning two men plus 500 pounds of samples or four men to orbit. The first lander is

to be landed and returned to orbit by remote control (unmanned) to serve as a "proof

test" vehicle. If the test is successful, the men land. If it is unsuccessful, the men do

not land. A fourth lander is an equipment vehicle. It lands a roving laboratory that can

be operated remotely from orbit or by the landed explorers.

The most difficult point from which to perform an abort (in terms of increased mis-

sion weight) is from the Mars parking orbit in the event of damage to or a malfunction of

the leave-Mars stage. To achieve an abort capability from this situation, a separate life

support and Earth deceleration system may be launched from Earth shortly after the mis-

sion launch on a hyperbolic-rendezvous-at-Mars departure trajectory. The crew then

uses the Earth deceleration stage existing in the Mars parking orbit to rendezvous with

this second Earth deceleration and life-support system. This appears to be the lightest

method to achieve an abort capability from Mars orbit.

The purpose of the preceding example has been to review some of the more impor-

tant concepts and ideas that have resulted from the present analysis such as the use of

elliptic orbital pickup at Earth return, the dual use of chemical propellants for decelera-

tion at Earth return and for radiation shielding, the elliptic parking orbits at Mars, the

tanker mode of Mars takeoff operation, the possible critical importance of long mission

times and low perihelions to crew radiation dose, and the mission profiles with abort

capability from any place in the mission.

More generally the present analysis has shown there are a large number of poten-

tially attractive mission profiles. This is important because it means that it is unlikely

that technical obstacles in any one area will preclude doing the mission. As was men-

tioned earlier, the final choice of a preferred profile must await further definition of

mission objectives, additional information on many technical areas, and further study

that will hopefully reveal still more favorable mission profiles.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, September 14, 1965.
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APPENDIXA

SYMBOLS

e parking orbit eccentricity T m mission duration, days

Fe/W e engine thrust to engine T s stay time, days

weight ratio (includes AT1, transit time from Earth toweight of thermal shield- 2 Mars, days
ing - and biological

shielding when required) AT2, 3 stay time at Mars, days

g acceleration due to gravity AT3, 4 transit time from Mars to

at Earth's surface, Earth, days

ft/sec 2 V H velocity along trajectory in

I propulsion system specific heliocentric coordinates

impulse, pounds of V@ atmospheric entry velocity
thrust per Earth pounds at Earth, fps

of fuel per second, sec
VO_ atmospheric entry velocity

L/D atmospheric entry vehicle at Mars, fps

lift-drag ratio
AV propulsive velocity incre-

ra apoapsis in Mars radii of ment, statute miles/sec

elliptical parking orbit WE empty weight of stageat Mars

W G initial weight of stage
rc radius in Mars radii of

circular parking orbit Ws/Wp shield to propellant weight
at Mars ratio

% periapsis in Mars radii (Ws/WG)o_ ratio of structure plus heat
of elliptical parking protection weight plus

orbit at Mars or of atmospheric approach

semiellipse used to guidance and control

depart from or arrive weight to entry vehicle

at a high circular park- gross weight for atmos-

ing orbit pheric braking from hyper-
bolic speeds at Mars

radius in Earth radii of
®

rende_zvous with space- WT/Wp effective tank weight fraction

ship at Earth return

(fig. 30(a), p. 61)
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angle between heliocentric tra- 3 leaving Mars

jectory and local horizontal 4 arriving Earth
(perpendicular to radius vec-

tor from Sun), deg 5 to perform landing at Mars from
elliptic parking orbit

T period of parking orbit at Mars,

days 6 to perform landing at Mars from
circular parking orbit

Subscripts:
7 to transfer from high circular park-

a to establish elliptical rendezvous
ing orbit at Mars to a cotangential

orbit at Earth (fig. 30(a), p. 61) ellipse with a periapsis at

b to rendezvous with spaceship at I. 1 Mars radii

Earth return from elliptical 8 to transfer from cotangential ellipse

rendezvous orbit (fig. 30(a)) to circular orbit about Mars at

h at perihelion i. 1 Mars radii

mc midcourse correction $ Earth

1 leaving Earth Cf' Mars

2 arriving Mars
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APPENDIXB

BIOLOGICALSHIELDING

Biological shielding requirements constitute one of the major factors affecting

IWIEO. The purpose of this section is to discuss the radiation environment and to show

how the shield weights were estimated as a function of mission time and mission trajectory.

RadiationSources

The crew receives radiation from nuclear reactors, Van Alien belts, galactic

sources, and solar flares. Radiation from the nuclear reactor has been discussed in the

Mission Propulsion Systems section (p. 14).

The Van Allen belts consist of protons and electrons trapped in the Earth's magnetic

field. The dose received during Earth departure is about 0.5 rein since the crew can be

in the command module and the traversal time is on the order of 1 hour (ref. 40). For

Earth return, however, the command module will be jettisoned prior to the Earth decel-

eration maneuver. The crew will pass through the belts in the Earth entry vehicle.

Despite the small shielding density afforded by vehicle structure and heat protection mate-

rial, the dose for Earth return is still only 4 rein because of the short traversal time.

These doses are of minor importance compared to those from other sources.

Galactic radiation consists of highly energetic particles, which are mostly protons.

Although the flux of these particles is very low, they exhibit significant variations with

time that are related to solar activity. Because these particles have enormous penetrat-

ing power and due to the buildup of secondaries even in low Z-number materials, shield-

ing may be impractical. The dose from this source will be discussed later along with

that from small solar flares.

At irregular intervals, the Sun emits bursts of radiation that are classified accord-

ing to the area of the visible disturbance of the Sun's surface. Class 1 and 2 flares occur

almost continuously, but their accompanying radiation is believed to be low in energy.

Class 3 flares, which occur less frequently, emit mostly protons of energies up to

500 million electron volts.

At rare intervals there occur giant major flares. These are large flares of the

class 3+ type. During these events the flux of energetic particles may increase several

thousand times the quiescent values. Typically, total intensities of big events are on the

order of 104 particles per square centimeter per second of energy above 40 million

electron volts.

Although it is well established that large solar flares will present a serious hazard
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TABLE XV. - LARGE SOLAR FLARE FREQUENCY to space flight, background sources con-

[0.99 Probability of not exceeding specified number. ] sisting of galactic radiation and small solar

flares may also contribute significantly,

Exposure time Class of flare especially for missions of extended dura-

3+ i ,laEnvelope tion. Foelsche (ref. 41) estimates the

days (1/2 envelope_ free-space dose rate from galactic radia-

Average frequency, yr tion to be about 0.45 rem per week during

I 4, solar maximum years, and approximately

twice this during solar minimum years.
Number of flares

When major solar flares are neglected

160 - 210 2 1 (ref. 32), it is estimated that the yearly
210- 300 2 2

average skin close from solar protons,300 - 462 3 2
462 - 630 4 2 behind 6 to 8 pounds per square foot of

630 - 654 4 3 shielding, is probably less than the maxi-

654 - 800 5 3 mum integrated yearly free-space dose
800- 1000 6 4

estimated for galactic radiation.

aEnvelope flare of reference 50. When these estimates are used, the

background dose rate is assumed to be 1.4 rein per week. Galactic radiation, which ac-

counts for 0.9 rein per week, is typical of that for a solar minimum year. The crew is

exposed to the solar proton dose rate of 0.5 rem per week in the living module where the

shield density is about 6 pounds per square foot.

The dose from these sources is affected by the ll-year solar cycle. In solar maxi-

mum years the galactic dose rate decreases. The frequency of small flares, however,

increases. Because of uncertainties involved in this area, the background dose rate is

assumed to be constant with both time and distance from the Sun.

The dose from large solar flares is dependent strongly on the flare spectrum. For

the giant major flare, the spectrum at 1 astronomical unit is taken to correspond to the

envelope flare of reference 32 which is assumed to occur with an average frequency of

once every four years. The other large class 3 flares are assumed to have an average

frequency of one per year. For a given shield thickness, their dose is assumed arbi-

trarily to be one-half that of the giant major flare. It is further assumed that the flux of

these flares varies inversely with the square of the distance from the Sun for closer

distances (ref. 42 gives some discussion of this point).

The occurrence of large solar flares cannot be predicted at the present time except

on statistical grounds. They are, therefore, assumed to occur at purely random intervals

with the previously mentioned average frequency. The design number of flares is given in

table XV where the probability is 0.99 of not exceeding the given number of each type.

Correspondingly, the probability of not exceeding the radiation dose associated with the

design number of flares is also 0.99.
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100 __ Giant major flares are assumed

s0 _ to occur at the following points along

60 _ _ Dosein rads-- the trajectory: the first at the point of
40 ------ Dosein rems--

closest approach to the Sun; the second
20 , at 1 astronomical unit just before final

\,k,\, propulsive maneuver; the third just

t0 _ before leaving Mars; the fourth evenly

6 distributed, in time, on the Earth-Mars
-"_-. Total

4 \ "_ .... trajectory. The other large class 3

2 _ flares are distributed with one at the

ooE 2 ypr0to_ns %_ , perihelion and the others at 1 astro-
-_ nomical unit and evenly distributed, in

Secondar

_ .81=_ -_ _ _Primary protons time throughout the mission duration.

__ .4 _ascade neutrons

Shield Characteristics
.2

.1 The radiation dose received from
.08 these flares is also a function of the
D _

kx,x interposed shield surface density and
.04 _.

_ the characteristics of the shield mate-

.02 _ _ Evaporationneutrons rial. Figure 42 shows the variation

in dose, imparted by a single giant.0]
0 40 80 120 160 200 240 major flare at 1 astronomical unit,

Shield surface density, Iblft2 with shield surface density (in lb/sq ft

Figure 42. - Radiationdosefrom giant major flare at 1 astronomical Of surface area). The results were
unit.

obtained by using the method of ref-

erence 43. The shield material is water, which is assumed to be representative of the

shielding characteristics of Bell + H202 or B2H 6 + OF 2 that are assumed in many of
the mission calculations. The solid lines indicate the dose, in rads, from solar flare

protons and secondary radiation produced by the interaction of these particles with the

shield material. These secondary particles include protons in addition to cascade and

evaporation neutrons. When a relative biological effectiveness (RBE) of 1 is assumed

for both primary and secondary protons and an RBE of 7 for both cascade and evaporation

neutrons, the total rem dose is indicated by the dashed line.

If adequate shielding is provided around the volume desired for normal living quarters,

the shield weight is prohibitive. A solution to this problem exists because as previously

mentioned large solar flares occur only infrequently and last for only short periods of

time (e. g., a day). During these periods, the crew can be sheltered in a small volume
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lOOx103 | -- to reduce shielding weight. This command

----_ - / module has a volume 450 cubic feet. From
80-- ----- Infiniteshielddensity -- / the shielded volume and shield surface

B2H6 and OF2 in ratio 4.3:1 /
l ,/ density the shield weight may be calculated.

/ Figure 43 shows the variation in shield

/ / weight with dose.

_- 4(1

Allowable Dose

2O /;f
// One of the many uncertainties con-

/ cerning shielding calculations involves a
0 40 80 120 160 200

Shieldsurfacedensity, Ib/ft2 definitionof the permissible crew dose.

(a) Effectof shield surface density on shield weight. The median lethal dose for man is con-

]20 sidered to be about 500 reins (ref. 33).

| Reducing the dose to 200 rems is expected

- _ 80 _ to cause vomiting and nausea for about

_= one day, followed by other symptoms of

_- -_ radiation sickness in about 50 percent of
¢D- O

fi_ the personnel. For still lower doses the
___ immediate effects are reduced, so that

0 20 40 60 80 lOOxlO3 only about 5 to 10 percent of the personnel

Shieldweight,Ib exposed to i00 reins will experience any

(b) Variation of water shield weightwith dose. radiationsickness (ref. 33). No deaths
Figure43.-Command moduleshielding.Volume,450

cubic feet. are anticipated at either of these two

levels. Since these symptoms are for

acute radiation exposure, they do not include the influence of dose rate.

It is known that equal rein doses given over different exposure times result in differ-

ent degrees of injury; that is, a considerably larger dose can be tolerated if it is received

over a period of weeks or months rather than days. These observations lead to the hypoth-

esis that the body recovers from radiation. Schaefer in reference 34 suggests a tentative

quantitative model based on small animal (mice) data extrapolated to man. The effec-

tive injury is expressed in terms of an equivalent instantaneous dose. As an example, a

dose rate of 1.14 rem per day for 1 year yields an accumulated dose of 416 rem, but with

body recovery the net injury is the same as that from instantaneous dose of 100 rem.

A recent report (ref. 44) shows a much slower rate of recovery for large animals (sheep

and goats) than would be expected from the extrapolation of the data for small animals.

Hence, the present results which assume body recovery may be optimistic. Thus, in

attempting to assign limits to the radiation dose, one of the uncertainties derives from
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the influence of the recovery phenomenon.

The approach used here is to assign limits to the crew dose depending on whether the

recovery phenomenon was assumed. Doses of i00 and 200 reins were selected when

assuming no recovery, while the dose assuming recovery was i00 rems. These doses are

called accumulated dose and maximum equivalent acute dose, respectively. As mentioned

before, the probability of not exceeding the specified doses is 0.99 corresponding to the

probability of not exceeding the number of flares assumed.

ShieldWeights

When the aforementioned data is used, the required shield weights can be found.

Figure 19 (p. 42) shows the variation in shield weight with trip time for the three values

of the crew dose. If the crew is limited to an accumulated dose of i00 rems, the shield

weight increases rapidly with mission time. Since the dose from background radiation

is assumed to be fully cumulative, the allowable dose from solar flares decreases. Con-

sequently, the required shield thickness must be increased.

To increase the allowable dose for solar flares, the total accumulated dose can be

increased. It is seen that a value of 200 rems results in a substantial weight reduction

and a more gradual change in shield weight for mission times of less than about 500 days.

Similar shield weights are required if the crew is limited to a maximum equivalent acute

dose of I00 rems.

However, for the longer trips (i. e., 700 to i000 days), a maximum equivalent acute

dose of I00 rems results in much lower shield weights than the 200 ac-rem. Also for the

same maximum equivalent dose, the shield weight is about as low or lower than that

required for shorter trip times. Although more flares occur during the longer trip

times, the vehicle does not approach as close to the Sun.
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APPENDIXC

MARSLANDINGANDTAKEOFFMANEUVERS

The Mars landing systems weight depends on the propulsive velocity increments for

landing and takeoff. The landing and takeoff trajectories are shown schematically in

figure 44 and the corresponding AVis are shown in figure 45. The purpose of the landing

trajectories (figs. 44(a) and (b)) is to inject the lander into the Mars atmosphere where

the primary deceleration takes place by atmosphere braking. (A terminal retrorocket is

also used. ) This general mode of operation is possible for even the lower estimates for

the Mars atmosphere surface density. Trajectories are characterized by a i0 ° path

Tangentto /I/
flight path--'_ / /

lOO"J-_Localhorizontal
at 200000ft

_ !Trajectory of lander

&V6
,,m
AV5 (b) Landing from circular orbit.

(a) Landingfrom elliptic
orbit.

AV8

/_(_r c = I. l _ Main spacecraftparking orbitI

i _ Direction of motion

_) Impulsive thrust vector

J_Tanker trajectory

AV7

(c) Maneuvers for tanker and two-stage mode of
operation.

Figure 44. - Mars landing and takeoff maneuvers.
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1. angle at 200 000 feet altitude within

&V t0transfer betweena f\ the atmosphere. The 10° path angle is
1. --circular orbit at 1.1 Mars- / \ believed to give good landing/ accuracy__ radii and higher circular_

orbit, AV7 + AV8 _ / with acceptable heating and g loads.
l. i i ,\ / The retro AV required at the apoapsis

of a parking ellipse is designated AV 5., The parking ellipes have a periapsis1

/ / AV t0transfer between a-- of 1. 1 Mars radii in every case. The__ /-_ / circular orbit at 1.1Mars/ / retro AV for injection into the atmos-"F= , radii and anelliptic orbit,--
>" / / AV8 --< , phere from a circular parking orbit is

.g / z

/ AV 6. From figure 45 it is noted that

/ a much larger AV is required to land._

= / from the circular parking orbit than
.5 /

__--_ /// //- circularAVto landorbit,frOmAv6a from the elliptic parking orbit, and
--_ .4 f_"_ I that the AV to land from the less ec-

/ ./_ / _ ._AV to transfer between centric ellipses is larger than for the

a_ / f //i x_a high circular orbit --/ and an ellipse with a __ highly eccentric ellipses.
.3 / /_// / periapsisat 1.1 Mars

//_p]_/ radii, z_V7 -- One of the landing and takeoff pro-I uses a maneu-
I filesconsidered tanker

hV tolandfroman

_/ elliptic parking vered into a circular orbit at 1. 1 Mars

//_"--_. _ I/ II°rbit'AV57 radii (fig. 44(c)). For this case AV 7
I I -4_5 is the increment to transfer from the

0 .2 .4 .6 .8 1.0 high circular orbit to a cotangential
Parking orbit eccentricity, e

I I I I I I I ellipse with a periapsis at I. 1 Mars

I. I 2 3 6 I0 22 ¢o radii. The AV 8 is the increment
High circular orbit or ellipse apoapsis

radius in Mars radii used to establish the circular orbit at

Figure 45. - Propulsive velocity increments for Mars landing andtakeoff. 1. 1 radii. The total AV to establish

a low circular orbit from a high circu-

lar orbit is AV 7 + AV 8. If the spaceship parking orbit is an elliptic orbit, then only AV 8

is required to establish the low circular orbit. It is noted that AV 7 + AV 8 can be sub-

stantially larger than AV 8.

For takeoff the same AV 7 + AV 8 is required to attain rendezvous at the high circu-

lar orbit from the low circular ,orbit, and AV 8 is needed to achieve an elliptic parking
ellipse from a low circular orbit.

The takeoff from the Mars surface to achieve a low circular parking orbit was calcu-

lated by using an optimum thrusting program. The required total velocity increment to

achieve a 1. 1 radii orbit is 16 700 feet per second. This is 1.37 times the surface circu-

lar velocity. This factor is larger than is usually estimated for a comparable Earth launch.
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